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Abstract— In this paper, event-triggered strategies for control
of discrete-time systems are proposed and analyzed. Similarly
to the continuous-time case, the plant is assumed input-to-
state stable with respect to measurement errors and the control
law is updated once a triggering condition involving the norm
of a measurement error is violated. The results are also
extended to a self-triggered formulation, where the next control
updates are decided at the previous ones, thus relaxing the
need for continuous monitoring of the measurement error. The
overall framework is then used in a novel Model Predictive
Control approach. The results are illustrated through simulated
examples.

I. INTRODUCTION

Traditional approaches to sampling for feedback control

involve a time-periodic decision ruling. However, this might

be a conservative choice. In some cases, equidistant sampling

can be prohibitive to attain certain goals. For example, the

issues of limited resource and insufficient communication

bandwidth for decentralized control of large scale systems,

or even the case of inadequate computation power for fast

systems, are problems that often have to be dealt with. A

recent approach is to sample only when is needed. Even

though we need to relax the periodicity for computation of

the control law, we still need to preserve necessary properties

of the system, such as stability and convergence. It is

therefore of great interest to build mechanisms for sampling

that do not rely on periodicity or time-triggering techniques.

A comparison of time-driven and event-driven control for

stochastic systems favoring the latter can be found in [2]. As

a result, in recent years the issue of event-driven feedback

and sampling, has been developed. The key attribute of these

approaches, is that the decision for the execution of the

control task is not made ad-hoc, but it is based on a certain

condition of the state of the system.

In [20], the control actuation is triggered whenever a

certain error norm becomes large enough to overtake the

norm of the state of the plant. The nominal system is assumed

to be Input-to-State stable [19], with respect to measurement

errors and then, tools from perturbation analysis of nonlinear

systems are used in order to analyze the performance of the

event-driven system. The results revealed that the proposed

scheme can maintain desired levels of performance. In a

similar context as [20], the authors in [13] have resorted to

an event-driven policy for sensor/ actuator networks, which
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resulted in less energy consumption. Event-driven strategies

for multi-agent are presented in [4], [5], while stochastic

event-triggered strategies regarding sensing and actuation for

networked control systems have been stated in [18]. More

recently, a new concept of event-predictive control for energy

saving of wireless networked control systems has appeared,

[8]. An alternative approach to event-driven control, for

perturbed linear systems can be found in [6]. In the case

of event-triggered feedback nonlinear systems a different

approach can be seen in [22]. Under the proposed scheme

the average sampling period has been elongated, compared

to previous works.

Event-driven techniques require the constant measurement

of the current state of the plant, in order to decide when

the control execution must be triggered. In the case of self-

triggered control [23], [1], only the last state measurement

needs to be known for determining the next time instant

where the state must be measured again so that the control

law is computed and the actuators are updated. A first attempt

has been made for linear systems in [21] and recently for

systems with finite-gain L2 stability. Some particular classes

of nonlinear systems, namely state-dependent homogeneous

systems and polynomial systems, under self-triggered policy

have been presented in [1]. Related works can be found in

[12], [13], [16], [15].

All of the approaches, previously mentioned, have been

performed in the continuous-time frame. The contribution

of this paper is to show how the event-triggered, as well

as the self-triggered techniques can be implemented over

the discrete-time frame. The main assumption used for the

event-triggered policies, is the Input-to-State property of the

plant. For general nonlinear discrete-time systems the ISS

characterization was first introduced in [10], and later refined

in [11]. For sampled-data systems notions of ISS stability

can be found in [17], while in [7] minimal ISS gains and

transient bounds are given for discrete nonlinear systems.

The purpose of this paper is to study how the event-

triggered as well as the self-triggered control can be reformed

in the case of discrete-time systems. The remainder of this

paper is comprised of five Sections. In Section II we provide

an equivalent relation of general discrete-time systems un-

der event-triggered formulation. Triggering conditions under

event and self-trigger policies for linear discrete systems are

provided in Section III. Following similar procedure-as in

the continuous-time context we present another approach

to computing inter-execution time for discrete-time systems,

in Section IV. Motivated by the fact that Model Predictive

Control schemes are computationally demanding algorithms,

we investigate in Section V the use of event-triggered control



for relaxing these computational needs. Section VI, presents

some simulation results in order to show the efficiency of the

proposed schemes. We conclude with some brief remarks on

Section VII.

II. EVENT-TRIGGERED CONTROL

In this section we are going to introduce the event-

triggered formulation for a general nonlinear system as in

[20], in its discrete-time counterpart, and we will state the

general event-triggering rule for sampling.

Consider a control system in the discrete time-domain of

the general form

x(k + 1) = f(x(k), u(k)) (1)

where x ∈ R
n is the state, x(k + 1) ∈ R

n is the successor

state, and u ∈ R
m are the control values, for each time

instant k ∈ Z+. The vector field f : R
n × R

m → R
n

is assumed to be continuous. Also assume without loss of

generality, that the origin is an equilibrium point for (1), i.e.,

f(0, 0) = 0.

Let the system (1) be continuously stabilizable by a

continuous feedback law of the form u(k) = w(x(k)), with

w : R
n → R

m. Then, system (1) is ISS-stabilizable with

respect to measurement errors e(k), i.e., there is feedback

control law, p : R
n → R

m of the form u(k) = p(x(k)+e(k))
that renders the closed-loop system

x(k + 1) = f(x(k), p(x(k) + e(k))) (2)

Input-to-State (ISS) stable with respect to measurement

errors e(k), [11]. As in classic Lyapunov theory a system

that is ISS-stable, admits an ISS-Lyapunov function, [14]. A

continuous function V : R
n → R>0 is an ISS-Lyapunov

function for the system (2) if there exist K∞ functions

α1, α2, such that

α1(||x||) ≤ V (x) ≤ α2(||x||) ∀x ∈ R
n (3)

and for some α that is class K∞ function, and γ that is class

K, V (x) also satisfies

V (f(x(k), p(x(k) + e(k)))) − V (x(k)) ≤

−α(||x(k)||) + γ(||e(k)||) (4)

Assume that in the event-triggered setup, the control is

updated at the discrete time instants

k0, k1, k2, . . .

The control law is defined as

u(k) = p(x(ki)), k ∈ [ki, ki+1) (5)

i.e., it remains constant in the inter-execution interval. We

assume that at the sampling instant ki, ki > 0 the state

variable vector x(ki) is available through measurement and

provides the current plant information. Defining the state

measurement error in this interval, as

e(k) = x(ki) − x(k), k ∈ [ki, ki+1) (6)

the stabilizable feedback control law is now given by

p(x(ki)) = p(x(k) + e(k))

with k ∈ [ki, ki+1) and the closed-loop equation of system

(1) becomes

x(k + 1) = f(x(k), p(x(k) + e(k))) (7)

System (7) remains ISS-stable, if e(k) satisfies

γ(||e||) ≤ σa(||x||) (8)

with 0 < σ < 1. Invoking this rule into equation (4), it

becomes

V (f(x(k), p(x(k)+e(k))))−V (x(k)) ≤ (σ−1)a(||x||) (9)

with V still guaranteed to be decreasing. Hence, the control

law should be updated as long as the condition

γ(||e||) ≤ σa(||x||) (10)

holds.

Theorem 1: Consider the system (1) and assume that the

previously presented assumptions hold. Then the control

law (2) with the event-triggered ruling (10), asymptotically

stabilizes the system to the origin.

III. LINEAR DISCRETE-TIME SYSTEMS

Using the general notion for event-trigger policy, presented

above, we specialize to discrete-time, time-invariant linear

systems. In this case, the triggering policy is found to be

also linear with respect to the state of the plant.

The system under consideration is

x(k + 1) = Ax(k) +Bu(k) (11)

where A ∈ R
n×n, B ∈ R

n×m and the input u(k) ∈ R
m

are defined in k ∈ Z+. The pair (A,B) is considered to be

stabilizable, which means that there exists a matrix K so that

the eigenvalues of A+BK are inside the unit disc, then the

system (11) is also ISS-stabilizable. ISS properties of linear

discrete-time systems were provided in [11].

Input-to-State stabilizability of system (11), implies that

there exists a stabilizing feedback control law u(k) =
K(x(k) + e(k)) where e is the measurement error seen as

a new input and, K is an appropriate matrix, defined above.

The compensated closed-loop system (11), is described by

the equation

x(k + 1) = (A+BK)x(k) +BKe(k) (12)

System (12) admits a quadratic ISS-Lyapunov function of

the form

V (x) = xTPx (13)

Function V is considered to be positive-definite, radially un-

bounded and satisfies property (3) with α1(r) = λmin(P )r2

and α2(r) = λmax(P )r2, with λmin(P ), λmax(P ) the

smallest and the largest eigenvalue of matrix P, respectively.

Given a symmetric and positive-definite matrix Q, let P be

the unique positive definite solution to

(A+BK)TP (A+BK) − P = −Q (14)



The difference of the ISS-Lyapunov function is

V (x(k + 1)) − V (x(k)) =

− xT (k)Qx(k) + 2xT (A+BK)TPBKe(k)

+ eT (k)KTBTPBKe(k) (15)

Then, the property (4), holds with

α(||x||) =
1

2
λmin(Q)||x||2

γ(||e||) = (
2||(A+BK)TPBK||2

λmin(Q)
+ ||KTBTPBK||)||e||2

In an event-triggered formulation of system (12), with

ISS-Lyapunov equation of the form (13) the control updates

should be enforced as long as

||e|| ≤ (4
||(A+BK)TPBK||2

σλ2
min(Q)

+ 2
||KTBTPBK||

σλmin(Q)
)−1||x||

(16)

with 0 < σ < 1, holds. Thus (16) is the equivalent of (10)

in the linear case. We also use the notation

µ = (4
||(A+BK)TPBK||2

σλ2
min(Q)

+ 2
||KTBTPBK||

σλmin(Q)
)−1

in the following paragraphs.

In the sequel, a result on the minimum time between two

consecutive executions is presented for the linear case. We

note here that non-trivial lower bounds on the inter-execution

times, i.e. bounds strictly larger than one, are not suitable for

the systems considered here due to their discrete time nature.

A proposition providing sufficient conditions for non-trivial

inter-execution times is given in the following paragraphs.

We consider how the state as well as the error evolve

with time. In view of equation (6), the system described in

equation (12) now becomes

x(k + 1) = Ax(k) +BKx(ki) (17)

where ki is the latest actuation update instant. We set the

vector c1 = BKx(ki) = const., and thus the solution of

(17) is

x(k) = Akx(ki) +

k−1
∑

j=0

Ak−1−jc1 (18)

It is straightforward to see, that the error at the next

discrete time instant is given by e(k+1) = x(ki)−x(k+1).
Thus, equation (12) with some manipulation becomes

e(k + 1) = (A+BK)e(k) + (I −A− 2BK)x(ki) (19)

The solution of this linear nonhomogeneous equation, is

given by

e(k) =

k−1
∑

j=0

(A+BK)k−1−jc2 (20)

where we set c2 = (I − A − 2BK)x(ki) = const. and

e(ki) = 0.

Define now the minimum k = k∗ that violates condition

(16), i.e.,

k∗ = arg min
k∈N

{||

k−1
∑

j=0

(A+BK)k−1−jc2|| ≥

µ||Akx(ki) +

k−1
∑

j=0

Ak−1−jc1||} (21)

Proposition 2: Consider the system (12) and assume that

(21) has a solution k∗ > 1 for all ki. Then the event-triggered

rule (16) is non-trivial, in the sense that it takes at least two

steps for the next controller update.

Further investigation of the sufficient conditions given in

the above Proposition is a topic of ongoing research.

A. Self-triggered control

Another view for finding sampling periods is the self-

triggered formulation. Motivated by the corresponding self-

triggered notion which was originally proposed by for the

continuous-time systems, here we are going to provide

their discrete analogues. Using this kind of implementation,

inter-execution times are provided as in the event-triggered

implementation, but in this case no continuous monitoring of

the plant’s state is required. We shall write the system (12)

in a state-space representation by eliminating variable x(ki),
while treating e(k) as a new state variable:

[

xk+1

ek+1

]

=

[

A+BK BK

I −A−BK I −BK

] [

xk

ek

]

We define y = [x(k)T , e(k)T ]T , and

C =

[

A+BK BK

I −A−BK I −BK

]

This system in a stack vector form becomes a linear homo-

geneous system, in particular it can be rewritten as

y(k + 1) = Cy(k) with y0 = yk0
(22)

The initial conditions of this system, at each sampling period,

is yk0
= [x(ki)

T , 0]T , and the solution of (22) is of the form

y(k) = Ck−kiyk0

As in the general event-triggered formulation, the differ-

ence of the ISS-Lyapunov function must be negative, and an

inequality of the form (10) must exist. As we saw in (16), at

the linear case this inequality becomes also linear. In view of

(16), while making little manipulations, this inequality can

be re-written as

||e(k)||2 + ||x(k)||2 ≤ µ2||x(k)||2 + ||x(k)||2

||y(k)||2 ≤ (1 + µ2)||Ĩy(k)||2 (23)

with Ĩ =
[

I 0
]

. Similarly to the derivation of Proposition

2, define the minimum k = k∗∗ that violates condition (23),

i.e.,

k∗∗ = arg min
k∈N

{||Ck−kiyk0
||2 ≥

(1 + µ2)||ĨCk−kiyk0
||2} (24)



We now can state the following result for the inter-

execution times in this formulation:

Proposition 3: Consider the system (12) and assume that

(24) has a solution k∗∗ > 1 for all ki. Then the self-triggered

rule (23) is non-trivial, in the sense that it takes at least two

steps for the next controller update.

It is worth noting from equation (24), that only the current

state of the plant is required to compute the next execution

time of the control, thus at each time instant it is known

when the next sampling time is going to take place.

IV. ANOTHER APPROACH TO COMPUTING THE

INTER-EXECUTION TIMES

In this section we propose another event-triggered strategy

which follows a similar strategy with the approach in [22].

The approach is valid for a smaller class of nonlinear systems

that satisfy stronger stability conditions. Recall

x(k + 1) = f(x(k), p(x(k) + e(k))) (25)

and assume that the following assumption holds:

Assumption 1: There exist positive constants

L,L1, a, γ ≥ 0, a C1 function W : R
n → R>0, and

K∞ functions α1, α2 such that

‖f(x(k), p(x(k) + e(k)))‖ ≤ L‖x(k)‖ + L‖e(k)‖ (26)

α1(||x||) ≤ W (x) ≤ α2(||x||) ∀x ∈ R
n (27)

W (f(x(k), p(x(k) + e(k)))) −W (x(k)) ≤

− aW (x(k)) + γ‖e(k)‖ (28)

α−1
1 (||x||) ≤ L1||x|| (29)

Let ki be the last update time. For each k ∈ [ki, ki+1),
we can then compute e(k + 1) = x(ki) − x(k + 1), so that

‖e(k+1)‖ ≤ ‖x(k+1)‖, and thus ‖e(k+1)‖ ≤ L‖x(k)‖+
L‖e(k)‖. Further note that x(k) = x(ki) − e(k), so that

‖e(k+1)‖ ≤ 2L‖e(k)‖+L‖x(ki)‖. Recalling that e(ki) = 0,

the comparison principle for discrete-time systems (see for

example, Proposition 1 in [3]) yields

‖e(k)‖ ≤
(2L)k − 1

2(2L− 1)
‖x(ki)‖ (30)

for all k ∈ [ki, ki+1). Equation (28) then yields

W (f(x(k), p(x(k) + e(k)))) −W (x(k)) ≤

− aW (x(k)) + γ
(2L)k − 1

2(2L− 1)
‖x(ki)‖ (31)

From (27), (29) we also have

‖x(ki)‖ ≤ α−1
1 (||W (x(ki))||) ≤ L1W (x(ki))

Denoting ψ(k) = γ
(2L)k

−1
2(2L−1)L1 we get W (x(k + 1)) ≤ (1 −

a)W (x(k)) + ψ(k)W (x(ki)). Using again the comparison

principle of [3] and assuming a < 1, we get

W (x(k)) ≤
1 − (1 − a)k

a(1 − a)
ψ(k)W (x(ki)) (32)

Similarly to [22], assume that events are triggered accord-

ing to

W (x(k)) = −ξW (x(ki))(k − ki) +W (x(ki)) (33)

the right hand side equation is strictly decreasing for ξ > 0
and thus convergence is guaranteed. Define now the mini-

mum k = k∗∗∗ as follows

k∗∗∗ =arg min
k∈N

{−ξ(k − ki) + 1 ≥

1 − (1 − a)k

a(1 − a)
ψ(k)} (34)

Then, using (32), (33), a sufficient condition for a non-

trivial interexecution time is given by k∗∗∗ > 1. Note that

in this case the result holds only for the restricted class of

nonlinear systems satisfying Assumption 1.

V. EVENT-TRIGGERED MODEL PREDICTIVE CONTROL

In this section, we provide initial results on the main

motivation behind the study of event-driven strategies for

discrete-time systems, namely, the application on computing

the inter-sample times in a Model Predictive Control frame-

work.

Consider that the feedback control that we use to stabilize

the plant is computed with a Model Predictive Control (abbr.

MPC) formulation. It is widely known that this approach

is computationally demanding, in the sense that at each

sampling period a finite-time optimal control problem must

be solved. In this paper we propose an alternative approach

based on the event-triggered framework described previously

that may be used to reduce the computational load of the

MPC framework.

MPC is an implicit feedback policy, and thus, the event-

trigger condition defined in (16), cannot be directly used. In

order to reach in an MPC event-trigger policy, we will use

the results as well as the notation of [9], where ISS properties

of linear MPC were investigated. Specifically, [9] deals with

linear systems and it is proven that the closed-loop system

with a receding horizon feedback is globally ISS, when the

system is open-loop stable and when input constraints are

present. In the case of unstable system, though, the same

results apply, but have local nature.

We consider the same scheme as in (11). We assume that

the prediction horizon is N . The solution of the optimization

MPC problem is the optimal sequence

uo(x) = {uo(0;x), uo(1;x), . . . , uo(N − 1;x)}

Consider a set Xf , over which there exist a feasible and

stabilizing control, and thus, application of this feasible

controller results in feasible state trajectories. Consider, also,

a controllability set Xn, i.e., the set of all initial conditions

that can be steered into the set Xf in N steps or less, where

the MPC feedback controller is defined. The optimization

problem has the cost function

V ∗

N (x) = min

N−1
∑

i=0

(x(k)TQx(k) + uT (k)Ru(k)))

+ F (x(N)) (35)



where Q > 0 and R > 0 are appropriate performance

functions. With particular choices of the terminal state

function F (·) and the set Xf , it can be proved that the

open-loop stable system (11), under the receding horizon

feedback κN (x) := uo(0;x) can be rendered exponentially

stable. The closed-loop system is a piecewise affine system

which is stable with a piecewise and differentiable quadratic

Lyapunov function V ∗

N (x) = x̄TPi(x)x̄, where x̄ = [x 1],
and i(·) is a switching function that maps the state space to

a finite set of indices labelling the polytopic partitions of the

state space.

In [9], the authors proved that the receding horizon scheme

globally ISS stabilizes stable linear systems with input con-

straints, with respect to additive disturbance. In an event-

triggered formulation, the error, defined as the difference in

(6), can be considered as the additive disturbance. Thus the

closed-loop system becomes

x(k + 1) = (A−BκN (x))x(k) +BκN (x)e(k)

:= Āi(x)x(k) +BκN (x)e(k) (36)

where Āi(x) is the closed-loop matrix corresponding to

the ith partition of the state space, and i is the switching

function that maps the state space to a finite set of indices

corresponding to different polytopic regions where the active

constraints do not change.

Constant sampling implies a zero error and global expo-

nential stability for the closed-loop system

V ∗

N (Ai(x)x) − V ∗

N (x) ≤ −Cq||x||
2 (37)

where Cq > 0 is the rate of the exponential decay. The

differentiability of the Lyapunov function implies

||
V ∗

N (x)

x
|| := ||Pi(x)x|| ≤ L̃||x|| (38)

where L̃ := maxi λmax(Pi). The maximum is taken over all

possible partitions, and λmax is the largest singular value of

Pi. Following a similar procedure as in [9], we obtain the

following result, which shows that the Lyapunov function

defined in (35), is also an ISS Lyapunov function

V ∗

N (x(k + 1)) − V ∗

N (x(k)) ≤ (−Cq + ǫL̃CA)||x(k)||2

+ (1 +
1

ǫ
)L̃CACB ||e(k)||2

(39)

where CA := maxi||Āi(x)|| and we let CB , be CB :=
||BκN (x)||2. Thus we reach to a conclusion for the event-

triggered formulation of a model predictive control system,

stated below

Theorem 4: The controller updates with event-triggered

formulation for a linear system as (11) under receding

horizon control, can be implemented when

||e(k)||2 ≤ Θ||x(k)||2 (40)

is violated,where

Θ =
(1 + 1

ǫ
)L̃CACB

σ(Cq − ǫL̃CA)

and 0 < σ < 1.

VI. EXAMPLES

In this section we provide some simulation results in order

to assess the efficiency of the proposed event-triggered, as

well as self-triggered stabilizing controllers in the linear case.

The process we consider is a linear, unstable, discrete-time

system described by

x(k + 1) = Ax(k) +Bu(k) (41)

where matrix A =

[

0.1 1.2
0.007 1.05

]

and matrix B =
[

300 200
0.5 0.001

]

. The control sequence is considered to be

optimal and can be determined from an LQR problem, which

minimizes a cost function of the form

J(u) =

∞
∑

k=0

[xT (k)Qx(k) + uT (k)Ru(k)] (42)

with performance matrices Q =

[

0.001 0
0 0.001

]

and R =
[

0.01 0.01
0.01 0.01

]

. The linear state feedback control law is writ-

ten in analytical form as u∗(k) = Kx(k), where the matrix

K is given by K = −[R + BTPB]−1BTPA. The matrix

P is the unique, symmetric, and positive-definite solution of

the discrete-time algebraic Riccati equation P = ATP (A+
BK) + Q. We are going to use P in the quadratic ISS-

Lyapunov equation, with V (x) = xTPx being the Lyapunov

function candidate. We also define another matrix Q̃ which

satisfies the following equation

P − (A+BK)TP (A+BK) = Q̃ (43)

For the particular problem (41) and the event-trigger policy

given in (16) we choose σ = 0.98. Then the constant µ

has the value µ = 0.2934. Assume, also, that the initial

state conditions are x0 = [−0.2, 0.5]T and that we want to

stabilize system (41) at the equilibrium.
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Fig. 1. Evolution of the error norm in the event-triggered case. Red stems
represent the evolution of the error norm ||e(k)|| which stays below the
state-dependent threshold µ||x(k)|| which is represented by the blue line
in the Figure.



Figure 1 depicts the norm of the error ||e(k)||. This stays

below the specified state-depended threshold, as given in (16)

and is represented by the blue solid line in the Figure. It can

be witnessed that using this event-trigger policy, which is

conservative, we can sample in periodic fashion, every three

steps.

The next Figure depicts the sampling of system (41) under

the self-triggered framework. In order to better visualize

when sampling takes place, under the self-trigger policy,

Figure 2, depicts the difference

D := ||y(k)||2 − (1 + µ2)||Ĩy(k)||2 (44)

where we used (23). When D, represented by the blue stems,

is below zero, there is no need for sampling, or in other

words, there is sampling when the blue stems are above the

zero line.

From the simulations is apparent that the system converges

under the event-triggered and self-triggered control frame-

works. The periodicity that takes place in both cases, is a

topic of the ongoing research.
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Fig. 2. Blue stems represent the difference given in (44).

VII. CONCLUSIONS

In this paper, event-triggered strategies for control of

discrete-time systems were proposed and analyzed. Similarly

to the continuous-time case, the plant is assumed input-

to-state stable with respect to measurement errors and the

control law is updated once a triggering condition involving

the norm of a measurement error is violated. We considered

both nonlinear and linear plant and sufficient condition for

non-trivial inter-execution times were derived. The results

were also extended to a self-triggered formulation, where

the next control updates are decided at the previous ones,

thus relaxing the need for continuous monitoring of the

measurement error. The overall framework was then used

in a novel Model Predictive Control approach. The results

were illustrated through simulated examples.

Future research will involve further integration of the

event-triggered approach with the model predictive control

framework. In particular, the ISS property of MPC algo-

rithms will be investigated both for continuous and discrete-

time systems and will be integrated with the event-triggered

framework in a more computationally efficient framework.
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