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Abstract. Let X be a quasi-projective S-scheme. We explain the relation
between the Hilbert scheme of d points on X, the dth symmetric product
of X, the scheme of divided powers of X of degree d and the Chow scheme
of zero-cycles of degree d on X with respect to a given projective embedding
X ↪→ P(E). The last three schemes are shown to be universally homeomor-
phic with isomorphic residue fields and isomorphic in characteristic zero or
outside the degeneracy loci. In arbitrary characteristic, the Chow scheme co-
incides with the scheme of divided powers for a sufficiently ample projective
embedding.

Introduction

Let X be a quasi-projective S-scheme. The purpose of this article is to explain
the relation between

a) The Hilbert scheme of points Hilbd
(
X/S) parameterizing zero-dimensional

subschemes of X of degree d.
b) The dth symmetric product Symd(X/S).
c) The scheme of divided powers Γd(X/S) of degree d.
d) The Chow scheme Chow0,d

(
X ↪→ P(E)

)
parameterizing zero dimensional

cycles of degree d on X with a given projective embedding X ↪→ P(E).
If X/S is not quasi-projective then none of these objects need exist as schemes
but the first three do exist in the category of algebraic spaces separated over S
[Ryd08, Ryd07b, I]. Classically, only the Chow variety of X ↪→ P(E) is defined but
we will show that for zero-cycles there is a natural Chow scheme whose underlying
reduced scheme is the Chow variety.

There are canonical morphisms

Hilbd(X/S) → Symd(X/S) → Γd(X/S) → Chow0,d

(
X ↪→ P(Ek)

)
where k ≥ 1 and X ↪→ P(Ek) is the Veronese embedding. The last two of these
are universal homeomorphisms with trivial residue field extensions and are iso-
morphisms if S is a Q-scheme. If S is arbitrary and X/S is flat then the second
morphism is an isomorphism. For arbitrary X/S the third morphism is not an
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isomorphism. In fact, the Chow scheme may depend on the chosen embedding as
shown by Nagata [Nag55]. However, we will show that the third morphism is an
isomorphism for sufficiently large k. Finally, we show that all three morphisms are
isomorphisms outside the degeneracy locus.

The comparison between the last three schemes uses weighted projective struc-
tures. Given a projective embedding X ↪→ P(E), there is an induced weighted pro-
jective structure on the symmetric product Symd(X). This follows from standard
invariant theory, using the Segre embedding (X/S)d ↪→ P(E⊗d). In characteris-
tic zero, this weighted projective structure on Symd(X) is actually projective, i.e.,
all generators have degree one. In positive characteristic, the weighted projective
structure is “almost projective”: the sheaf O(1) on Symd(X) is ample and gener-
ated by its global sections. This is a remarkable fact as for a general quotient, the
sheaf O(1) of the weighted projective structure is usually not even invertible.

Since O(1) is generated by its global sections, we obtain a projective morphism
Symd(X) → P(TSdOS

(E)). In characteristic p, the ample sheaf O(1) is not always
very ample, and thus this morphism is usually not a closed immersion. It is however
a universal homeomorphism onto its image — the Chow variety. In summary, the
reason that the Chow variety depends on the choice of projective embedding is that
it is the image of an invariant object, the symmetric product, under a projective
morphism induced by an ample sheaf which is not always very ample.

Given a projective embedding X ↪→ P(E), the scheme of divided powers Γd(X)
has a similar weighted projective structure with similar properties. We define the
Chow scheme to be the image of the analogous morphism Γd(X) → P(ΓdOS

(E)).
For a sufficiently ample projective embedding, e.g., take the Veronese embedding
X ↪→ P(Sk(E)) for a sufficiently large k, this morphism is a closed immersion. In
particular, it follows that Γd(X) is projective.
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1. The algebra of divided powers and symmetric tensors

We begin this section by briefly recalling the definition of the algebra of divided
powers ΓA(M) and the multiplicative structure of ΓdA(B). We then give a sufficient
and necessary condition for ΓdA(M) to be generated by γd(M). This generalizes
the sufficiency condition given by Ferrand [Fer98, Lem. 2.3.1]. The condition is
essentially that every residue field of A should have at least d elements. Similar
conditions on the residue fields reappear in Sections 3.1 and 5.2. Finally, we recall
some explicit degree bounds on the generators of ΓdA(A[x1, x2, . . . , xr]).

1.1. Divided powers and symmetric tensors. This section is a quick review
of the results needed from [Rob63, Rob80]. Also see [Fer98, I].

Notation (1.1.1). Let A be a ring and M an A-algebra. We denote the dth tensor
product of M over A by TdA(M). We have an action of the symmetric group Sd

on TdA(M) permuting the factors. The invariant ring of this action is the algebra
of symmetric tensors which we denote by TSdA(M). By TA(M) and TSA(M) we
denote the graded A-modules

⊕
d≥0 TdA(M) and

⊕
d≥0 TSdA(M) respectively.

(1.1.2) Let A be a ring and let M be an A-module. Then there exists a graded A-
algebra, the algebra of divided powers, denoted ΓA(M) =

⊕
d≥0 ΓdA(M) equipped

with maps γd : M → ΓdA(M) such that, denoting the multiplication with × as
in [Fer98], we have that for every x, y ∈M , a ∈ A and d, e ∈ N

Γ0
A(M) = A, γ0(x) = 1, Γ1

A(M) = M, and γ1(x) = x(1.1.2.1)

γd(ax) = adγd(x)

γd(x+ y) =
∑
d1+d2=d

γd1(x)× γd2(y)

γd(x)× γe(x) =
(
d+ e

d

)
γd+e(x)

Using (1.1.2.1) we identify A with Γ0
A(M) and M with Γ1

A(M). If (xα)α∈I is a set
of elements of M and ν ∈ N(I) then we let

γν(x) = ×
α∈I

γνα(xα)
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which is an element of ΓdA(M) with d = |ν| =
∑
α∈I να.

(1.1.3) Functoriality — ΓA(·) is a covariant functor from the category of A-
modules to the category of graded A-algebras [Rob63, Ch. III §4, p. 251].

(1.1.4) Base change — If A′ is an A-algebra then there is a natural isomor-
phism ΓA(M)⊗A A′ → ΓA′(M ⊗A A′) mapping γd(x)⊗A 1 to γd(x⊗A 1) [Rob63,
Thm. III.3, p. 262].

(1.1.5) Multiplicative structure — When B is an A-algebra then the multiplica-
tion of B induces a multiplication on ΓdA(B) which we will denote by juxtaposi-
tion [Rob80]. This multiplication is such that γd(x)γd(y) = γd(xy).

(1.1.6) Universal property — If M is an A-module, then the A-module ΓdA(M)
represents polynomial laws which are homogeneous of degree d [Rob63, Thm. IV.1,
p. 266]. If B is an A-algebra, then the A-algebra ΓdA(B) represents multiplicative
polynomial laws which are homogeneous of degree d [Fer98, Prop. 2.5.1].

(1.1.7) Basis — If (xα)α∈I is a set of generators of M , then
(
γν(x)

)
ν∈N(I) is a set

of generators of ΓA(M). If (xα)α∈I is a basis of M then
(
γν(x)

)
ν∈N(I) is a basis of

ΓA(M) [Rob63, Thm. IV.2, p. 272].

(1.1.8) Presentation — Let M = G/R be a presentation of the A-module M .
Then ΓA(M) = ΓA(G)/I where I is the ideal of ΓA(G) generated by the images in
ΓA(G) of γd(x) for every x ∈ R and d ≥ 1 [Rob63, Prop. IV.8, p. 284].

(1.1.9) Γ and TS — The homogeneous polynomial law M → TSdA(M) of degree d
given by x 7→ x⊗Ad = x⊗A · · ·⊗Ax corresponds by the universal property (1.1.6) to
an A-module homomorphism ϕ : ΓdA(M) → TSdA(M) [Rob63, Prop. III.1, p. 254].

WhenM is a free A-module then ϕ is an isomorphism [Rob63, Prop. IV.5, p. 272].
The functors ΓdA and TSdA commute with filtered direct limits [I, 1.1.4, 1.2.11]. Since
any flat A-module is the filtered direct limit of free A-modules [Laz69, Thm. 1.2], it
thus follows that ϕ : ΓdA(M) → TSdA(M) is an isomorphism for any flat A-module
M .

Moreover by [Rob63, Prop. III.3, p. 256], there is a diagram of A-modules

TSdA(M) � � // TdA(M)

����

ΓdA(M)

OO

SdA(M)oo

such that going around the square is multiplication by d!. Thus if d! is invertible
then ΓdA(M) → TSdA(M) is an isomorphism. In particular, this is the case when A
is purely of characteristic zero, i.e., contains the field of rationals.
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Let B be an A-algebra. As the law B → TSdA(B) given by x 7→ x⊗Ad is multi-
plicative, it follows that the homomorphism ϕ : ΓdA(B) → TSdA(B) is an A-algebra
homomorphism. In Section 4.1 we study the properties of ϕ more closely.

1.2. When is ΓdA(M) generated by γd(M)? ΓdA(M) is not always generated by
γd(M) but a result due to Ferrand [Fer98, Lem. 2.3.1], cf. Proposition (1.2.4), shows
that there is a finite free base change A ↪→ A′ such that ΓdA′(M ⊗AA′) is generated
by γd(M⊗AA′). We will prove a slightly stronger statement in Proposition (1.2.2).

We let
(
γd(M)

)
denote the A-submodule of ΓdA(M) generated by the subset

γd(M).

Lemma (1.2.1). Let A be a ring and M an A-module. There is a commutative
diagram (

γdA(M)
)
⊗A A′

ϕ

��

// ΓdA(M)⊗A A′

∼=ψ

��
◦(

γdA′(M ⊗A A′)
)

⊆ ΓdA′(M ⊗A A′)

where ψ is the canonical isomorphism of (1.1.4). If A → A′ is a surjection or a
localization then ϕ is surjective. In particular, if in addition

(
γdA′(M ⊗A A′)

)
=

ΓdA′(M ⊗A A′) then
(
γdA(M)

)
⊗A A′ → ΓdA(M)⊗A A′ is surjective.

Proof. The morphism ϕ is well-defined as ψ
(
γd(x)⊗A a′

)
= a′γd(x⊗A 1) if x ∈M

and a′ ∈ A′. If A′ = A/I then ϕ is clearly surjective. If A′ = S−1A is a localization
then ϕ is surjective since any element of M ⊗AA′ can be written as x⊗A (1/f) and
ϕ
(
γd(x)⊗A 1/fd

)
= γd

(
x⊗A (1/f)

)
. �

Proposition (1.2.2). Let M be an A-module. The A-module ΓdA(M) is generated
by the subset γd(M) if the following condition is satisfied

(*) For every p ∈ Spec(A) the residue field k(p) has at least d elements or Mp

is generated by one element.
If M is of finite type, then this condition is also necessary.

Proof. Lemma (1.2.1) gives that
(
γdA(M)

)
= ΓdA(M) if and only if

(
γdAp

(Mp)
)

=
ΓdAp

(Mp) for every p ∈ Spec(A). We can thus assume that A is a local ring and
only need to consider the condition (*) for the maximal ideal m. If M is generated
by one element then it is obvious that

(
γdA(M)

)
= ΓdA(M).

Further, any element in ΓdA(M) is the image of an element in ΓdA(M ′) for some
submodule M ′ ⊆ M of finite type. It is thus sufficient, but not necessary, that
ΓdA(M ′) is generated by γd(M ′) for every submodule M ′ ⊆M of finite type. We can
thus assume that M is of finite type. Lemma (1.2.1) applied with A � A/m = k(m)
together with Nakayama’s lemma then shows that

(
γdA(M)

)
= ΓdA(M) if and only

if
(
γdA/m(M/mM)

)
= ΓdA/m(M/mM). We can thus assume that A = k is a field.

We will prove by induction on e that Γek(M) is generated by γe(M) when 0 ≤
e ≤ d if and only if either rkM ≤ 1 or |k| ≥ e. Every element in Γek(M) is a linear
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combination of elements of the form

γν(x) = γν1(x1)× γν2(x2)× · · · × γνm(xm).

where xi ∈M and |ν| = e. By induction γν2(x2)×· · ·×γνm(xm) ∈
(
γe−ν1(M)

)
and

we can thus assume that m = 2 and it is enough to show that γi(x) × γe−i(y) ∈(
γe(M)

)
for every x, y ∈ M and 0 ≤ i ≤ e if and only if either rkM ≤ 1 or

|k| ≥ e. If x and y are linearly dependent this is obvious. Thus we need to show
that for x and y linearly independent, we have that γi(x)×γe−i(y) ∈

(
γe(kx⊕ky)

)
if and only if |k| ≥ e. A basis for Γek(kx ⊕ ky) is given by z0, z1, . . . , ze where
zi = γi(x)× γe−i(y), see (1.1.7). For any a, b ∈ k we let

ξa,b := γe(ax+ by) =
e∑
i=0

γi(ax)× γe−i(by) =
e∑
i=0

aibe−izi.

Then
(
γek(kx⊕ ky)

)
= Γek(kx⊕ ky) if and only if

∑
(a,b)∈k2 kξa,b =

⊕e
i=0 kzi. Since

ξλa,λb = λeξa,b this is equivalent to
∑

(a:b)∈P1
k
kξa,b =

⊕e
i=0 kzi. It is thus necessary

that
∣∣P1
k

∣∣ = |k| + 1 ≥ e + 1. On the other hand if a1, a2, . . . , ae ∈ k∗ are distinct
then ξa1,1, ξa2,1, . . . , ξae,1, ξ1,0 are linearly independent. In fact, this amounts to
(1, ai, a2

i , a
3
i , . . . , a

e
i )i=1,2,...,e and (0, 0, . . . , 0, 1) being linearly independent in ke+1.

If they are dependent then there exist a non-zero (c0, c1, . . . , ce−1) ∈ ke such that
c0 + c1ai + c2a

2
i + · · ·+ ce−1a

e−1
i = 0 for every 1 ≤ i ≤ e but this is impossible

since c0 + c1x+ · · ·+ ce−1x
e−1 = 0 has at most e− 1 solutions. �

Lemma (1.2.3). Let Λd = Z[T ]/Pd(T ) where Pd(T ) is the unitary polynomial∏
0≤i<j≤d(T

i− T j)− 1. Then every residue field of Λd has at least d+ 1 elements.
In particular, if A is any algebra, then A ↪→ A′ = A⊗Z Λd is a faithfully flat finite
extension such that every residue field of A′ has at least d+ 1 elements.

Proof. The Vandermonde matrix (T ij)0≤i,j≤d is invertible in EndΛd
(Λd+1

d ) since it
has determinant one. Let k be a field and ϕ : Λd → k be any homomorphism. If t =
ϕ(T ) then (tij)0≤i,j≤d is invertible in Endk(kd+1) and it follows that 1, t, t2, . . . , td

are all distinct and hence that k has at least d+ 1 elements. �

Proposition (1.2.4). [Fer98, Lem. 2.3.1] Let Λd be as in Lemma (1.2.3). If A is
a Λd-algebra then ΓdA(M) is generated by γd(M). In particular, for every A there
is a finite faithfully flat extension A → A′, independent of M , such that ΓdA′(M

′)
is generated by γd(M ′).

Proof. Follows immediately from Proposition (1.2.2) and Lemma (1.2.3). �

1.3. Generators of the ring of divided powers. In this section we will recall
some results on the degree of the generators of ΓdA(B). For our purposes the results
of Fleischmann [Fle98] is sufficient and we will not use the more precise and stronger
statements of [Ryd07a] even though some bounds would be slightly improved then.



HILBERT AND CHOW SCHEMES, SYM. PRODUCTS AND DIV. POWERS 7

Definition (1.3.1) (Multidegree). Let B = A[x1, x2, . . . , xr]. We define the mul-
tidegree of a monomial xα ∈ B to be α. This makes B into a Nr-graded ring

B =
⊕
α∈Nr

Bα =
⊕
α∈Nr

Axα

Let M be the A-module basis of B consisting of the monomials. Recall from
paragraph (1.1.7) that a basis of ΓA(B) is given by the elements γν(x) = ×α γνα(xα)
for ν ∈ N(M). We let mdeg

(
γk(xα)

)
= kα and mdeg(f × g) = mdeg(f) + mdeg(g)

for f, g ∈ ΓA(B). Then

mdeg
(
×
α
γνα(xα)

)
=

∑
xα∈M

να mdeg(xα) =
∑
α∈Nr

ναα.

We let ΓdA(B)α be the A-module generated by basis elements γν(x) of multidegree
α. This makes ΓdA(B) =

⊕
α∈Nr ΓdA(B)α into a Nr-graded ring.

Definition (1.3.2) (Degree). Let B = A[x1, x2, . . . , xr] =
⊕

k≥0Bk with the usual
grading, i.e., Bk are the homogeneous polynomials of degree k. The graded A-
algebra C =

⊕
k≥0 ΓdA(Bk) is a subalgebra of ΓdA(B). If an element f ∈ ΓdA(B)

belongs to Ck = ΓdA(Bk) we say that f is homogeneous of degree k. The degree
of an arbitrary element f ∈ ΓdA(B) is the smallest natural number n such that
f ∈ ΓdA (

⊕n
k=0Bk).

Remark (1.3.3). Let B = A[x0, x1, . . . , xr] and let C =
⊕

k≥0 ΓdA(Bk) be the
graded subring of ΓdA(B). The degree in the previous definition is such that there
is a relation between the degree of elements in C and the degree of an element in
the graded localization C(γd(s)) for s ∈ B1. To see this, note that

C(γd(s)) = ΓdA
(
B(s)

)
= ΓdA

(
A[x0/s, . . . , xr/s]

)
.

We let A[x0/s, . . . , xr/s] be graded such that xi/s has degree 1. An element
f ∈ ΓdA(A[x0/s, . . . , xr/s]) of degree n can then be written as g/γd(s)n where
g ∈ ΓdA(Bn) is homogeneous of degree n.

Theorem (1.3.4) ([Ric96, Prop. 2], [Ryd07a, Cor. 8.4]). If d! is invertible in A
then ΓdA(A[x1, . . . , xr]) is generated by the elementary multisymmetric functions
γd1(x1)×γd2(x2)×· · ·×γdr (xr)×γd−d1−d2−···−dr (1), di ∈ N and d1+d2+· · ·+dr ≤ d.

Theorem (1.3.5) ([Fle98, Thm. 4.6, 4.7], [Ryd07a, Cor. 8.6]). For an arbitrary
ring A, the A-algebra ΓdA(A[x1, . . . , xr]) is generated by γd(x1), γd(x2), . . . , γd(xr)
and the elements γk(xα)×γd−k(1) with kα ≤ (d−1, d−1, . . . , d−1). Further, there
is no smaller multidegree bound and if d = ps for some prime p not invertible in A,
then ΓdA(A[x1, . . . , xr]) is not generated by elements of strictly smaller multidegree.

Theorems (1.3.4) and (1.3.5) give the following degree bound:
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Corollary (1.3.6). Let A be a ring and B = k[x1, x2, . . . , xr]. Then ΓdA(B) is
generated by elements of degree at most max

(
1, r(d − 1)

)
. If d! is invertible in A,

then ΓdA(B) is generated by elements of degree one.

2. Weighted projective schemes and quotients by finite groups

In this section we review the definition and the basic results on weighted projec-
tive schemes. We will in particular focus on weighted projective structures which
are covered in degree one. By this, we mean that the sections of O(1) give an affine
cover of the weighted projective scheme. We then recall the construction, using
invariant theory, of a geometric quotient of a projective scheme by a finite group.
Finally, we discuss the failure of a geometric quotient to commute with arbitrary
base change and closed immersions.

2.1. Remarks on projectivity. We will follow the definitions in EGA. In par-
ticular, very ample, ample, quasi-projective and projective will have the meanings
of [EGAII, §4.4, §4.6, §5.3, §5.5]. By definition, a morphism q : X → S is quasi-
projective if it is of finite type and there exists an invertible OX -sheaf L ample
with respect to q. Note that this does not imply that X is a subscheme of PS(E)
for some quasi-coherent OS-module E . However, if S is quasi-compact and quasi-
separated then there is a quasi-coherent OS-module of finite type E and an immer-
sion X ↪→ P(E) [EGAII, Prop. 5.3.2]. Similarly, a projective morphism is always
quasi-projective and proper but the converse only holds if S is quasi-compact and
quasi-separated.

Furthermore, if q : X → S is a projective morphism and L a very ample
invertible sheaf on X then L does not necessarily correspond to a closed embedding
into a projective space over S. We always have a closed embedding X ↪→ P(q∗L)
as q is proper [EGAII, Prop. 4.4.4] but q∗L need not be of finite type. If S is
locally noetherian however, then q∗L is of finite type [EGAIII, Thm. 3.2.1]. If S
is quasi-compact and quasi-separated then we can find a sub-OS-module of finite
type E of q∗L such that we have a closed immersion i : X ↪→ P(E) and such that
L = i∗OP(E)(1).

We will also need the following stronger notion of projectivity introduced by
Altman and Kleiman in [AK80, §2]. Our definition differs slightly from theirs as
we do not require strongly projective morphisms to be of finite presentation.

Definition (2.1.1). A morphism X → S is strongly projective (resp. strongly
quasi-projective) if it is of finite type and factors through a closed immersion (resp.
an immersion) X ↪→ PS(L) where L is a locally free OS-module of constant rank.

Remark (2.1.2). A strongly (quasi-)projective morphism is (quasi-)projective and
the converse holds when S is quasi-compact, quasi-separated and admits an ample
sheaf, e.g., S affine [AK80, Ex. 2.2 (i)]. In fact, in this case there is an embedding
X ↪→ PnS and thus the notions of projective and strongly projective also agree with
the definitions in [Har77].
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2.2. Weighted projective schemes.

Definition (2.2.1). Let S be a scheme. A weighted projective scheme over S is an
S-scheme X together with a quasi-coherent graded OS-algebra A of finite type, not
necessarily generated by degree one elements, such that X = ProjS(A). We let as
usual OX(n) = Ã(n) for any n ∈ Z.

If A is generated by degree one elements then the sheaves OX(n) are invertible
for any integer n and very ample if n is positive. Furthermore, there is then a
canonical isomorphism OX(m) ⊗OX

OX(n) = OX(m + n). All these properties
may fail if A is not generated by degree one elements.

It can however be shown, cf. Corollary (2.2.4), that if S is quasi-compact then
q : X → S is projective. To be precise, there is a positive integer n such thatOX(n)
is invertible, the homomorphism q∗An → OX(n) is surjective and in : X → P(An)
is a closed immersion. In particular, OX(n) = i∗nOP(An)(1) is very ample. Another
consequence is that if X is a weighted projective scheme over an arbitrary scheme
S then X → S is proper.

We will give a demonstration of the projectivity of X → S when S is quasi-
compact and also show some properties of the sheaves OX(n). The results are
somewhat weaker than those in [BR86, §4] but we also give stronger results when
X is covered in degree one.

The following lemma is an explicit form of [EGAII, Lem. 2.1.6].

Lemma (2.2.2). If B is a graded A-algebra generated by elements f1, f2, . . . , fs ∈
B of degrees d1, d2, . . . , ds and l is the least common multiple of d1, d2, . . . , ds then

(i) Bn+l = (BnBl) for every n ≥ (s− 1)(l − 1).
(ii) Bkn = (Bn)k for every k ≥ 0 if n = al with a ≥ s− 1.

Proof. Clearly Bk is generated by fa1
1 fa2

2 . . . fas
s such that

∑
i aidi = k. Let gi =

f
l/di

i ∈ Bl. If k ≥ s(l − 1) + 1 and f = fa1
1 fa2

2 . . . fas
s ∈ Bk then gi|f for some i

which shows (i). (ii) follows easily from (i). �

Proposition (2.2.3) (cf. [BR86, Cor. 4A.5, Thm. 4B.7]). Let A be a ring and
let B be a graded A-algebra generated by a finite number of elements f1, f2, . . . , fs
of degrees d1, d2, . . . , ds. Let l be the least common multiple of the di’s. Let S =
Spec(A), X = Proj(B) and OX(n) = B̃(n). Then

(i) X =
⋃
f∈Bn

D+(f) if n = al and a ≥ 1.
(ii) OX(n) is invertible if n = al and a ∈ Z.
(iii) OX(n) is ample and generated by global sections if n = al and a ≥ 1.
(iv) The canonical homomorphism OX(al) ⊗ OX(n) → OX(al + n) is an iso-

morphism for every a, n ∈ Z.
(v) If n = al with a ≥ 1 then there is a canonical morphism in : X →

P(Bn). If a ≥ max {1, s− 1} then in is a closed immersion and OX(n) =
i∗nOP(Bn)(1) is very ample relative to S.

(vi) OX(n) is generated by global sections if n ≥ (s− 1)(l − 1).
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Proof. (i) is trivial as X =
⋃s
i=1 D+(fi) =

⋃s
i=1 D+

(
f
al/di

i

)
if a ≥ 1, cf [EGAII,

Cor. 2.3.14]. Note that if f ∈ Bl then

(2.2.3.1) Bf =
(
B(f) ⊕B(1)(f) ⊕ · · · ⊕B(l − 1)(f)

)
[f, f−1].

Thus Γ
(
D+(f),OX(al)

)
= B(al)(f) = B(f)f

a is a free B(f)-module of rank one
which shows (ii).

(iii) If a ≥ 1 then
(
D+(f)

)
f∈Bal

is an affine cover ofX. AsOX(al) is an invertible
sheaf it is thus generated by global sections and ample by definition, cf. [EGAII,
Def. 4.5.3 and Thm. 4.5.2 a′)].

(iv) It is enough to show that the homomorphism OX(al)⊗OX(n) → OX(al+n)
is an isomorphism locally over D+(f) with f ∈ Bl. Locally this homomorphism is
B(al)(f)⊗B(f)B(n)(f) → B(al+n)(f) which is an isomorphism by equation (2.2.3.1)

(v) If n = al with a ≥ 1 then by (i) the morphism in : X → P(Bn) is everywhere
defined. If in addition a ≥ s− 1 then B(n) is generated by degree one elements by
Lemma (2.2.2) (ii). Thus we have a closed immersionX = Proj(B) ∼= Proj(B(n)) ↪→
P(Bn).

(vi) Assume that n ≥ (s − 1)(l − 1), then Bn+kl = (BnBkl ) for any positive
integer k by Lemma (2.2.2) (i). If f ∈ Bl and b ∈ B(n)(f), then b = b′/fk for some
b′ ∈ Bn+kl =

(
BnB

k
l

)
and thus b ∈

(
B(f)Bn

)
. This shows that OX(n) is generated

by global sections as Bn ⊆ Γ
(
D+(f),OX(n)). �

Corollary (2.2.4) ([EGAII, Cor. 3.1.11]). If S is quasi-compact and X = ProjS(A)
is a weighted projective scheme then there exists a positive integer n such that
X → P(An) is everywhere defined and a closed immersion. In particular X is
projective and OX(n) is very ample relative to S.

Proof. Let {Si} be a finite affine cover of S and let Ai = Γ(Si,OS) and Bi =
Γ(Si,A). Then as Bi is a finitely generated graded Ai-algebra, there is by Propo-
sition (2.2.3) a positive integer ni such that X ×S Si → P

(
(Bi)ni

)
is defined and a

closed immersion. Choosing n as the least common multiple of the ni’s we obtain
a closed immersion X ↪→ P(An). �

Remark (2.2.5). Note that (2.2.3) (iv), (v), (vi) implies that the following are
equivalent:

(i) OX(n) is invertible for all 0 < n < l.
(ii) OX(n) is invertible for all n.
(iii) OX(n) is very ample for all sufficiently large n.

As (i) is easily seen to not hold in many examples in particular (iii) is not always
true.

The following condition will be important later on as it is satisfied for Symd(X/S)
for X/S quasi-projective. Note that in the remainder of this section we do not
assume that A is finitely generated. In particular, ProjS(A) need not be a weighted
projective space.
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Definition (2.2.6). Let S be a scheme, A a graded quasi-coherent OS-algebra and
X = ProjS(A). If there is an affine cover (Sα) of S such that X ×S Sα is covered
by

⋃
f∈Γ(Sα,A1)

D+(f), then we say that X/S is covered in degree one.

Proposition (2.2.7). Let A be a ring and let B be a graded A-algebra generated
by elements of degree ≤ d. Let S = Spec(A), X = Proj(B) and OX(n) = B̃(n). If
X/S is covered in degree one then

(i) X =
⋃
f∈Bn

D+(f) if n ≥ 1.
(ii) OX(n) is invertible for n ∈ Z and ample and generated by global sections

if n ≥ 1.
(iii) OX(m)⊗OX(n) ∼= OX(m+ n) for every m,n ∈ Z.
(iv) The canonical morphism in : X → P(Bn) is defined for every n ≥ 1. If

n ≥ d then in is a closed immersion and OX(n) = i∗nOP(Bn)(1) is very
ample relative S.

Proof. (i) is equivalent to X/S being covered in degree one. Using the cover X =⋃
f∈B1

D+(f) instead of the coverX =
⋃
f∈Bl

D+(f) we may then prove (ii) and (iii)
exactly as (ii), (iii) and (iv) in Proposition (2.2.3).

(iv) Let n ≥ d and let B′ be the sub-A-algebra of B generated by Bn. It is enough
to show that the inclusion B′ ↪→ B induces an isomorphism Proj(B) ∼= Proj(B′).
We will show this using the cover X =

⋃
f∈B1

D+(fn). Let f ∈ B1 and g ∈ B(fn)

such that g = b/fnk for some b ∈ Bnk. To show that g ∈ B′(fn) we can assume that
b = b1b2 . . . bs is a product of elements of degrees di ≤ d, as every element of Bnk
are sums of such. Then g =

(∏s
i=1 bif

n−di
)
/fns which is an element of B′(fn). �

Corollary (2.2.8). Let S be any scheme and A a graded quasi-coherent OS-algebra
such that A is generated by elements of degree at most d. Let X = Proj(A),
OX(n) = Ã(n) and assume that X/S is covered in degree one. Then

(i) OX(n) = OX(1)⊗n is invertible for every n ∈ Z.
(ii) If n ≥ 1 then OX(n) is ample and q∗An → OX(n) is surjective.
(iii) For every n ≥ 1 the canonical morphism in : X → P(An) is everywhere

defined. If n ≥ d it is a closed immersion.

In particular, if X = ProjS(A) also is a weighted projective scheme, i.e., if A is of
finite type, then X is projective.

Example (2.2.9) (Standard weighted projective spaces). Let A = k be an al-
gebraically closed field of characteristic zero and B = k[x0, x1, . . . , xr]. Choose
positive integers d0, d1, . . . , dr and consider the action of G = µd0 × · · · × µdr

∼=
Z/d0Z× · · · × Z/drZ on B given by (n0, n1, . . . , nr) · xi = ξni

di
xi where ξdi is a dith

primitive root of unity. Then BG = k[xd00 , x
d1
1 , . . . , x

dr
r ] and Proj

(
BG

)
is a weighted

projective space of type (d0, d1, . . . , dr).
It can be seen, cf. Proposition (2.3.4), that Proj

(
BG

)
is the geometric quotient

of Proj(B) = Pr by G. More generally, if S is a noetherian scheme and X/S is
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projective with an action of a finite group G linear with respect to a very ample
sheaf OX(1), then a geometric quotient X/G exists and can be given a structure
as a weighted projective scheme.

The weighted projective space Proj
(
BG

)
is often denoted P(d0, d1, . . . , dr). It

can also be constructed as the quotient of Ar+1− 0 by Gm where Gm acts on Ar+1

by λ ·xi = λdixi. The closed points of P(d0, d1, . . . , dr) are thus {x = (x0 : x1 : · · · :
xr)} = kr+1/ ∼ where x ∼ y if there is a λ ∈ k∗ such that λdixi = yi for every i.

2.3. Quotients of projective schemes by finite groups. LetX be an S-scheme
and G a discrete group acting on X/S, i.e., there is a group homomorphism G →
AutS(X). In the category of ringed spaces we can construct a quotient Y = (X/G)rs
as following. Let Y as a topological space be X/G with the quotient topology, and
quotient map q : X → Y . Further let the sheaf of sections OY be the subsheaf
(q∗OX)G ↪→ q∗OX of G-invariant sections. Note that G acts on q∗OX since for any
open subset U ⊆ Y the inverse image q−1(U) is G-stable and hence has an induced
action of G. Thus we obtain a ringed S-space (Y,OY ) together with a morphism
of ringed S-spaces q : X → Y . The ringed space (Y,OY ) is not always a scheme,
in fact not always even a locally ringed space. But when it exists as a scheme it is
called the geometrical quotient and is also the categorial quotient in the category of
schemes over S. For general existence results we refer to [Ryd07b]. The existence of
a geometric quotient of an affine schemes by a finite group is not difficult to show:

Proposition (2.3.1) ([SGA1, Exp. V, Prop. 1.1, Cor. 1.5]). Let S be a scheme, A
a quasi-coherent sheaf of OS-algebras and X = SpecS(A). An action of G on X/S
induces an action of G on A. If G is a finite group then Y = SpecS

(
AG

)
is the

geometric quotient of X by G. If S is locally noetherian and X → S is of finite
type, then Y → S is of finite type.

From this local result it is not difficult to show the following result:

Theorem (2.3.2) ([SGA1, Exp. V, Prop. 1.8]). Let f : X → S be a morphism
of arbitrary schemes and G a finite discrete group acting on X by S-morphisms.
Assume that every G-orbit of X is contained in an affine open subset. Then the
geometrical quotient q : X → Y = X/G exists as a scheme.

It can also be shown, from general existence results, that if X/S is separated
then this is also a necessary condition [Ryd07b, Rmk. 4.9].

Remark (2.3.3). If X → S is quasi-projective, then every G-orbit is contained in
an affine open set. In fact, we can assume that S = Spec(A) is affine and thus
that we have an embedding X ↪→ PnS . For any orbit Gx we can then choose a
section f ∈ OPn(m) for some sufficiently large m such that V(f) does not intersect
Gx. The affine subset D(f) then contains the orbit Gx. More generally [EGAII,
Cor. 4.5.4] shows that every finite set, in particulary every G-orbit, is contained in
an affine open set if X/S is such that there exists an ample invertible sheaf on X
relative to S.
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In Corollary (2.3.6) we will show that if S is a noetherian scheme and X → S
is (quasi-)projective, then so is X/G→ S. In fact if X is projective we will give a
weighted projective structure on X/G.

Proposition (2.3.4). Let S be a scheme and let A =
⊕

d≥0Ad be a graded quasi-
coherent OS-algebra, generated by degree one elements. Let G be a finite group
acting on A by graded OS-algebra automorphisms. Then G acts on X = ProjS(A)
linearly with respect to OX(1). As X admits a very ample invertible sheaf relative
to S, a geometric quotient Y = X/G exists, cf. Remark (2.3.3). There is an
isomorphism Y ∼= ProjS

(
AG

)
and under this isomorphism, the quotient map q :

X → Y is induced by AG ↪→ A.

Proof. Everything is local over S so we can assume that S = Spec(A), A = B̃
and X = Proj(B). We can cover X by G-stable affine subsets of the form D+(f)
with f ∈ BG homogeneous. In fact, if Z is a G-orbit of X then the demonstration
of [EGAII, Cor. 4.5.4] shows that there is a homogeneous f ′ ∈ B such that Z ⊆
D+(f ′). If we let f =

∏
σ∈G σ(f ′), then Z ⊆ D+(f) and f ∈ BG is homogeneous.

Over such an open set we have that

X|D+(f)/G = Spec
((
B(f)

)G)
= Spec

(
(BG)(f)

)
= Proj

(
BG

)
|D+(f).

It is thus clear that Y = Proj
(
BG

)
. �

Remark (2.3.5). Note that AG is not always generated by AG1 even though A is
generated by A1. Also, if S = Spec(A) is affine and A = B̃, we may not be able to
cover X = Proj(B) with G-stable affine subsets of the form D+(f) with f ∈ BG1 .
This is demonstrated by example (2.2.9) if we choose di > 1 for some i.

Corollary (2.3.6) ([Knu71, Ch. IV, Prop. 1.5]). Let S be noetherian, X → S
be projective (resp. quasi-projective) and G a finite group acting on X by S-
morphisms. Then the geometrical quotient X/G is projective (resp. quasi-projective).

Proof. Let X ↪→ (X/S)m = X ×S X ×S · · · ×S X be the closed immersion given
by x → (σ1x, σ2x, . . . , σmx) where G = {σ1, σ2, . . . , σm}. As X → S is quasi-
projective and S is noetherian, there is an immersion X ↪→ PS(E) for some quasi-
coherent OS-module of finite type E , see [EGAII, Prop. 5.3.2]. This immersion
together with the immersion X ↪→ (X/S)m given above, gives a G-equivariant
immersion X ↪→

(
PS(E)/S

)n if we let G permute the factors of
(
PS(E)/S

)n. Fol-
lowing this immersion by the Segre embedding we get a G-equivariant immersion
f : X ↪→ PS(E⊗m) where G acts linearly on PS(E⊗m), i.e., by automorphisms of
E⊗m.

Let Y = f(X) be the schematic image of f . As Y is clearly G-stable we have an
action of G on Y and a geometric quotient q : Y → Y/G. Then, as X ↪→ Y is an
open immersion and q is open, we have that X/G = (Y/G)|q(Y ). Thus it is enough
to show that Y/G is projective. Let A = S(E⊗m)/I such that Y = Proj(A). Then
there is an action of G on A1 which induces the action Y . By Proposition (2.3.4)
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we have that Y/G = Proj
(
AG

)
. The scheme Y/G is a weighted projective scheme

as AG is an OS-algebra of finite type by Proposition (2.3.1). It then follows by
Corollary (2.2.4) that Y/G is projective. �

2.4. Finite quotients, base change and closed subschemes. A geometric quo-
tient is always uniform, i.e., it commutes with flat base change [GIT, Rmk. (7), p. 9].
It is also a universal topological quotient, i.e., the fibers corresponds to the orbits
and the quotient has the quotient topology and this holds after any base change.
However, in positive characteristic a geometric quotient is not necessarily a univer-
sal geometric quotient, i.e., it need not commute with arbitrary base change. This
is shown by the following example:

Example (2.4.1). Let X = Spec(B), S = Spec(A), S′ = Spec(A/I) with A =
k[ε]/ε2 where k is a field of characteristic p > 0, B = k[ε, x]/(ε2, εx) and I = (ε).
We have an action of G = Z/p = 〈τ〉 on B given by τ(x) = x + ε and τ(ε) = ε.
Then τ(xn) = xn for all n ≥ 2 and thus BG = k[ε, x2, x3]/(ε2, εx2, εx3). Further,
we have that (B ⊗A A′)G = k[x] and BG ⊗A A′ = k[x2, x3].

Recall that a morphism of schemes is a universal homeomorphism if the under-
lying morphism of topological spaces is a homeomorphism after any base change.

Proposition (2.4.2) ([EGAIV, Cor. 18.12.11]). Let f : X → Y be a morphism
of schemes. Then f is a universal homeomorphism if and only if f is integral,
universally injective and surjective.

Proposition (2.4.3). Let X/S be a scheme with an action of a finite group G such
that every G-orbit of X is contained in an affine open subset. Let S′ → S be any
morphism and let X ′ = X ×S S′. Then geometric quotients q : X → X/G and
r : X ′ → X ′/G exists. Let (X/G)′ = (X/G)×S S′. As r is a categorical quotient
we have a canonical morphism X ′/G → (X/G)′. This morphism is a universal
homeomorphism.

Proof. The geometric quotients q and r exists by Theorem (2.3.2). As q and r
are universal topological quotients it follows that X ′/G → (X/G)′ is universally
bijective. As X ′ → X ′/G is surjective and X ′ → (X/G)′ is universally open it
follows that X ′/G→ (X/G)′ is universally open and hence a universal homeomor-
phism. �

If G acts on X and U ⊆ X is a G-stable open subscheme, then U/G is an
open subscheme of X/G. In fact, U/G is the image of U by the open morphism
q : X → X/G. If Z ↪→ X is a closed G-stable subscheme, then Z/G is not always
the image of Z by q. In fact, Z/G need not even be a subscheme of X/G. We have
the following result:

Proposition (2.4.4). Let G be a finite group, X/S a scheme with an action of
G such that the geometric quotient q : X → X/G exists. Let Z ↪→ X be a
closed G-stable subscheme. Then the geometric quotient r : Z → Z/G exist. Let
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q(Z) be the scheme-theoretic image of the morphism Z ↪→ X → X/G. As r is
a categorical quotient, the morphism Z → q(Z) ↪→ X/G factors canonically as
Z → Z/G → q(Z) ↪→ X/G. The morphism Z/G → q(Z) is a schematically
dominant universal homeomorphism.

Proof. As Z/G and q(Z) both are universal topological quotients of Z, the canonical
morphism Z/G→ q(Z) is universally bijective. Since Z → q(Z) is universally open
and Z → Z/G is surjective we have that Z/G→ q(Z) is universally open and thus
a universal homeomorphism. Further as Z → q(Z) is schematically dominant the
morphism Z/G→ q(Z) is also schematically dominant. �

Corollary (2.4.5). Let G and X/S be as in Proposition (2.4.4). There is a canon-
ical universal homeomorphism (Xred)/G→ (X/G)red.

We can say even more about the exact structure of Z/G → q(Z). For ease of
presentation we state the result in the affine case.

Proposition (2.4.6). Let A be a ring with an action by a finite group G and
let I ⊂ A be a G-stable ideal. Let X = Spec(A) and Z = Spec(A/I). Then
Z/G = Spec

(
(A/I)G

)
and q(Z) = Spec

(
AG/IG

)
. We have an injection AG/IG ↪→

(A/I)G. If f ∈ (A/I)G then there is an n | card(G) such that fn ∈ AG/IG. To be
more precise we have that

(i) If A is a Z(p)-algebra with p a prime, e.g., a local ring with residue field k
or a k-algebra with char k = p, then n can be chosen as a power of p.

(ii) If A is purely of characteristic zero, i.e., a Q-algebra, then AG/IG ↪→
(A/I)G is an isomorphism.

Proof. Let f ∈ A such that its image f ∈ A/I is G-invariant. To show that
f
n ∈ AG/IG for some positive integer n it is enough to show that f

n ∈ AG/IG⊗ZZp

for every p ∈ Spec(Z). As Z → Zp is flat, we have that

AG ⊗Z Zp = (A⊗Z Zp)G

IG ⊗Z Zp = (I ⊗Z Zp)G

AG/IG ⊗Z Zp = (A⊗Z Zp)G/(I ⊗Z Zp)G

(A/I)G ⊗Z Zp = (A/I ⊗Z Zp)G.

Thus we can assume that A is a Zp-algebra.
Let q be the characteristic exponent of Zp/pZp, i.e., q = p if p = (p), p > 0 and

q = 1 if p = (0). Choose positive integers k and m such that card(G) = qkm and
q - m if q 6= 1. Then choose a Sylow subgroup H of G of order qk, or H = (e) if
q = 1, and let σ1H,σ2H, . . . , σmH be its cosets. Then

g =
1
m

m∑
i=1

∏
σ∈σiH

σ(f)

is G-invariant and its image g ∈ AG/IG maps to f
qk

∈ (A/I)G. �
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Proposition (2.4.6) can also be extended to the case where G is any reductive
group [GIT, Lem. A.1.2].

Remark (2.4.7). Let X/S be a scheme with an action of a finite group G with
geometric quotient q : X → X/G. Then

(i) If S is a Q-scheme and S′ → S is any morphism then (X ×S S′)/G =
X/G×S S′.

(ii) If S is arbitrary and U ⊆ X is an open immersion then U/G = q(U).
(iii) If S is a Q-scheme and Z ↪→ X is a closed immersion then Z/G = q(Z).
(iv) If S is a Q-scheme then (X/G)red = Xred/G.

(ii) follows from the uniformity of geometric quotients, (i) and (iv) follows from
the universality of geometric quotients in characteristic zero and (iii) follows from
Proposition (2.4.6).

Statement (iii) can also be proven as follows. We can assume that X = Spec(A)
is affine. Then the homomorphism AG ↪→ A has an AG-module retraction, the
Reynolds-operator R, given by R(a) = 1

card(G)

∑
σ∈G σ(a). This implies that AG ↪→

A is universally injective, i.e., injective after tensoring with any A-module M . In
particular AG ↪→ A is cyclically pure, i.e., IGA = I, where IG = I ∩ AG, for any
ideal I ⊆ A. If we let S = Spec

(
AG

)
and S′ = Spec

(
AG/IG

)
then Z = X ×S S′ =

Spec(A/I) and (iii) follows from (i).

3. The parameter spaces

In this section we define the symmetric product Symd(X/S), the scheme of di-
vided powers Γd(X/S), and the Chow scheme of zero-cycles Chow0,d(X ↪→ P(E)).
We show that when X/S is a projective bundle, then Symd(X/S) is projective and
we essentially obtain a bound on the generators of the natural weighted projective
structure, cf. Theorem (3.1.12). As a corollary, we show that if X/S is projec-
tive then so is Γd(X/S), cf. Theorem (3.2.10). If A is a graded OS-algebra and
X = Proj(A) then Γd(X/S) = Proj(

⊕
k≥0 Γd(Ak)) in analogy with the description

Symd(X) = Proj(
⊕

k≥0 TSd(Ak)). The Chow scheme of X = Proj(A) is defined as
the projective scheme corresponding to the subalgebra of

⊕
k≥0 Γd(Ak) generated

by degree one elements. The reduction of this scheme is the classical Chow variety.

3.1. The symmetric product.

Definition (3.1.1). Let X be a scheme over S and d a positive integer. We let
the symmetric group on d letters Sd act by permutations on (X/S)d = X×SX×S
· · · ×S X. When X/S is separated, the geometric quotient of (X/S)d by the action
of Sd exists as an algebraic space [Ryd07b] and we denote it by Symd(X/S) :=
(X/S)d/Sd. The scheme (or algebraic space) Symd(X/S) is called the dth sym-
metric product of X over S and is also denoted Symmd(X/S), (X/S)(d) or X(d) by
some authors.
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Definition (3.1.2). Let X/S be a scheme. We say that X/S is AF if the following
condition is satisfied:

(AF) Every finite set of points x1, x2, . . . , xn over the same point s ∈ S
is contained in an affine open subset of X.

Remark (3.1.3). If X has an ample sheaf relative to S, then X/S is AF, cf. [EGAII,
Cor. 4.5.4]. It is also clear from [EGAII, Cor. 4.5.4] that if X/S is AF then so is
X ×S S′/S′ for any base change S′ → S. It can further be seen that if X/S is AF
then X/S is separated.

Remark (3.1.4). Let X/S be an AF-scheme and let d be a positive integer. By
Theorem (2.3.2) the geometric quotient Symd(X/S) is then a scheme. Let (Sα)
be an affine cover of S and let (Uαβ) be an affine cover of X ×S Sα such that
any set of d points of X lying over the same point s ∈ Sα is included in some
Uαβ . Then (Uαβ/Sα)d is an open cover of (X/S)d by affine schemes. Thus∐
α,β Symd(Uαβ/Sα) → Symd(X/S) is an open covering by affines.
In the remainder of this section we will study the symmetric product when

S = Spec(A) is an affine scheme and X/S is projective. We will use the following
notation:

Notation (3.1.5). Let A be a ring and let B =
⊕

k≥0Bk be a graded A-algebra
finitely generated by elements in degree one. Let S = Spec(A) and X = Proj(B)
with very ample sheaf OX(1) = B̃(1) and canonical morphism q : X → S.

Further we let C =
⊕

k≥0 TdA(Bk) ⊂ TdA(B). Then (X/S)d = Proj(C) and
Proj(C) ↪→ P(C1) = P

(
TdA(B1)

)
is the Segre embedding of (X/S)d corresponding

to the embedding X = Proj(B) ↪→ P(B1). The permutation of the factors induces
an action of the symmetric group Sd on C and we let D = CSd =

⊕
k≥0 TSdA(Bk)

be the graded invariant ring.
By Proposition (2.3.4) we have that Symd(X/S) := Proj(C)/Sd = Proj(D). If A

is noetherian, then D is finitely generated and Symd(X/S) is a weighted projective
space. In general, however, we do not know that D is finitely generated. We
do know that Symd(X/S) → S is universally closed though, as (X/S)d → S is
projective.

Lemma (3.1.6). Let x1, x2, . . . , xd ∈ X be points such that q(x1) = q(x2) = · · · =
q(xd) = s. Then there exists a positive integer n and an element f ∈ Bn ⊆
Γ
(
X,OX(n)

)
such that x1, x2, . . . , xd ∈ Xf = D+(f). If the residue field k(s) has

at least d elements then it is possible to take n = 1.

Proof. The existence of f for some n follows from [EGAII, Cor. 4.5.4]. For the last
assertion, assume that k(s) has at least d elements. As we can lift any element
f ∈ Bn ⊗A k(s) to an element f ∈ Bn after multiplying with an invertible element
of k(s), we can assume that A = k(s). Replacing B with the symmetric algebra
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S(B1) = k[t0, t1, . . . , tr] we can further assume that B is a polynomial ring and
X = Prk(s).

An element of B1 = Γ
(
X,OX(1)

)
is then a linear form f = a0t0+a1t1+· · ·+artr

with ai ∈ k(s) and can be thought of as a k(s)-rational point of (Prk(s))
∨. The linear

forms which are zero in one of the xi’s form a proper closed linear subset of all linear
forms. Thus if k(s) is infinite then there is a k(s)-rational point corresponding to
a linear form non-zero in every xi. If k = k(s) is finite, then at most (|k|r − 1)/|k∗|
linear forms are zero at a certain xi and equality holds when xi is k-rational. Thus
at most

d(|k|r − 1)/(|k| − 1) ≤ (|k|r+1 − |k|)/(|k| − 1)

= (|k|r+1 − 1)/(|k| − 1)− 1

linear forms contain at least one of the x1, x2, . . . , xd and hence there is at least one
linear form which does not vanish on any of the points. �

Proposition (3.1.7). The product Xd = X×SX×S · · ·×SX is covered by Sd-stable
affine open subsets of the form Xf×SXf×S · · ·×SXf where f ∈ Bn ⊆ Γ

(
X,OX(n)

)
for some n. If every residue field of S has at least d elements then the open subsets
with f ∈ B1 ⊆ Γ

(
X,OX(1)

)
cover Xd.

Proof. Follows immediately from Lemma (3.1.6). �

Corollary (3.1.8). The symmetric product Symd(X/S) is covered by open affine
subsets Symd

(
Xf/S

)
with f ∈ Bn ⊆ Γ

(
X,OX(n)

)
for some n. If every residue field

of S has at least d elements then those affine subsets with n = 1 cover Symd(X/S).

Corollary (3.1.9). The symmetric product Y = Symd(X/S) = Proj(D) is covered
by Yg where g ∈ D1 ⊆ Γ

(
Y,OY (1)

)
, i.e., Y = Proj(D) is covered in degree one.

Proof. Let A ↪→ A′ be a finite flat extension such that every residue field of A′ has
at least d elements, e.g., the extension A′ = A⊗Z Λd suffices by Lemma (1.2.3). Let
B′ = B ⊗A A′ and C ′ = C ⊗A A′ and let D′ = D ⊗A A′ =

⊕
n≥0 TSdA(Bn)⊗A A′.

Then D′ =
⊕

n≥0 TSdA′(B
′
n) as A ↪→ A′ is flat. Note that if f ′ ∈ B′n then g′ =

f ′⊗f ′⊗· · ·⊗f ′ ∈ D′
n and Symd(X ′

f ′/S) = D+(g′) as open subsets of Symd(X ′/S′).
Thus Corollary (3.1.8) shows that

√
D′

1D
′
+ = D′

+. As Spec(A′) → Spec(A) is
surjective it follows that

√
D1D+ = D+. �

We now use the degree bound on the generators of TSdA(A[x1, . . . , xr]) obtained
in Corollary (1.3.6) to get something very close to a degree bound on the generators
of D =

⊕
k≥0 TSdA(Bk) when B = A[x0, x1, . . . , xr] is the polynomial ring.

Proposition (3.1.10). Let N be a positive integer and D≤N be the subring of
D =

⊕
k≥0 TSdA(Bk) generated by elements of degree at most N . Then the inclusion

D≤N ↪→ D induces a morphism ψN : Proj(D) → Proj(D≤N ). Further we have
that:
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(i) If B = A[x0, x1, . . . , xr] is a polynomial ring and N ≥ r(d− 1) then ψN is
an isomorphism.

(ii) If A is purely of characteristic zero, i.e., a Q-algebra, then ψN is an iso-
morphism for any N .

Proof. By Corollary (3.1.9) the morphism ψN is everywhere defined for N ≥ 1. Let
A ↪→ A′ be a finite flat extension such that every residue field of A′ has at least d
elements, e.g., A′ = A ⊗Z Λd as in Lemma (1.2.3). If we let C ′ = C ⊗A A′ then
we have that D′ = D ⊗A A′ = C ′Sd and D′

≤N = D≤N ⊗A A′ as A ↪→ A′ is flat.
If ψ′N : Proj(D′) → Proj(D′

≤N ) is an isomorphism then so is ψN as A ↪→ A′ is
faithfully flat. Replacing A with A′, it is thus enough to prove the corollary when
every residue field of S has at least d elements. Hence we can assume that we have
a cover of Proj(D) by D+

(
f⊗d

)
with f ∈ B1 by Corollary (3.1.8).

We have that D(f⊗d) = TSdA(B(f)) and this latter ring is generated by elements
of degree ≤ max{r(d − 1), 1} for arbitrary A and by elements of degree one when
A is purely of characteristic zero by Corollary (1.3.6). As noted in Remark (1.3.3)
this implies that D(f⊗d) = (D≤N )(f⊗d) which shows (i) and (ii). �

Corollary (3.1.11). Let N be a positive integer and DN be the subring of D(N) =⊕
k≥0 TSdA(BNk) generated by TSdA(BN ). Then the inclusion DN ↪→ D(N) induces

a morphism ψN : Proj(D) → Proj(DN ). Further we have that:

(i) If B = A[x0, x1, . . . , xr] is a polynomial ring and N ≥ r(d− 1) then ψN is
an isomorphism.

(ii) If A is purely of characteristic zero, i.e., a Q-algebra, then ψN is an iso-
morphism for any N .

Proof. Let D≤N be the subring of D =
⊕

k≥0 TSdA(Bk) generated by elements of
degree at most N . As Proj(D) is covered in degree one by Corollary (3.1.9) then so
is Proj(D≤N ). In fact, as Proj(D) → Spec(A) is universally closed, it follows that
Proj(D) → Proj(D≤N ) is surjective. By Proposition (2.2.7) (iv) it then follows that
DN ↪→ (D≤N )(N) induces an isomorphism Proj(D(N)

≤N ) → Proj(DN ). The corollary
thus follows from Proposition (3.1.10). �

Theorem (3.1.12). Let S be any scheme and E a quasi-coherent OS-sheaf of finite
type. Then for any N ≥ 1, there is a canonical morphism

Symd(P(E)/S) → P
(
TSdOS

(SNE)
)
.

If L is a locally free OS-sheaf of constant rank r + 1 then the canonical morphism
Symd(P(L)/S) ↪→ P

(
TSdOS

(SNL)
)

is a closed immersion for N ≥ r(d − 1). In
particular, it follows that Symd(P(L)/S) → S is strongly projective.

Proof. The existence of the morphism follows by Corollary (3.1.11). Part (i) of the
same corollary shows that Symd(P(L)/S) ↪→ P

(
TSdOS

(SNL)
)

is a closed immersion
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when N ≥ r(d − 1). As SNL is locally free of constant rank it follows by para-
graph (1.1.7) that TSdOS

(SNL) is locally free of constant rank which shows that
Symd(P(L)/S) is strongly projective. �

In section 3.3, we will show that the canonical morphism Symd(P(E)/S) →
P
(
TSdOS

(SNE)
)

is a universal homeomorphism onto its image which is defined to
be the Chow scheme Chow0,d

(
P(E)

)
.

3.2. The scheme of divided powers. Let S be any scheme and A a quasi-
coherent sheaf of OS-algebras. As the construction of ΓdA(B) commutes with local-
ization with respect to multiplicatively closed subsets of A we may define a quasi-
coherent sheaf of OS-algebras ΓdOS

(A). We let Γd(Spec(A)/S) = Spec
(
ΓdOS

(A)
)
.

The scheme Γd(X/S) is thus defined for any scheme X affine over S. Similarly we
obtain for any homomorphism of quasi-coherent OS-algebras A → B a morphism
of schemes Γd(Spec(B)/S) → Γd(Spec(A)/S). This defines a covariant functor
X 7→ Γd(X/S) from affine schemes over S to affine schemes over S.

It is more difficult to define Γd(X/S) for any X-scheme S since ΓdA(B) does not
commute with localization with respect to B. In fact, it is not even a B-algebra.
In [I, 3.1] a certain functor ΓdX/S is defined which is represented by Γd(X/S) when
X/S is affine. When X/S is quasi-projective, or more generally an AF-scheme, cf.
Definition (3.1.2), then ΓdX/S is represented by a scheme [I, Thm. 3.1.11]. If X/S
is a separated algebraic space, then ΓdX/S is represented by a separated algebraic
space [I, Thm. 3.4.1].

The object representing ΓdX/S will be denoted by Γd(X/S). We briefly state
some facts about Γd(X/S) used in the other sections. We then show that Γd(X/S)
is (quasi-)projective when X/S is (quasi-)projective.

(3.2.1) The space of divided powers — For any algebraic scheme X separated
above S, there is an algebraic space Γd(X/S) over S with the following properties:

(i) For any morphism S′ → S, there is a canonical base-change isomorphism
Γd(X/S)×S S′ ∼= Γd(X ×S S′/S′).

(ii) If X/S is an AF-scheme, then Γd(X/S) is an AF-scheme.
(iii) If A is a quasi-coherent sheaf on S such that X = SpecS(A) is affine S,

then Γd(X/S) = SpecS
(
ΓdOS

(A)
)

is affine over S.
(iv) If X =

∐n
i=1Xi then Γd(X/S) is the disjoint union∐

d1,d2,...,dn≥0
d1+d2+···+dn=d

Γd1(Xi/S)×S Γd2(X2/S)×S · · · ×S Γdn(Xn/S).

(v) If X → S has one of the properties: finite type, finite presentation, locally
of finite type, locally of finite presentation, quasi-compact, finite, integral,
flat; then so has Γd(X/S) → S.

This is Thm. 3.1.11, Prop. 3.1.4, Prop. 3.1.8 and Prop. 4.3.1 of [I].
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(3.2.2) Push-forward of cycles — Let f : X → Y be any morphism of algebraic
schemes separated over S. There is then a natural morphism, push-forward of
cycles, f∗ : Γd(X/S) → Γd(Y/S) which for affine schemes is given by the covariance
of the functor ΓdA(·). If f : X → Y is an immersion (resp. a closed immersion,
resp. an open immersion) then f∗ : Γd(X/S) → Γd(Y/S) is an immersion (resp.
closed immersion, resp. open immersion) [I, Prop. 3.1.7].

(3.2.3) Addition of cycles — Let d, e be positive integers. The composition of
the open and closed immersion Γd(X/S) ×S Γe(X/S) ↪→ Γd+e(X q X/S) given
by (3.2.1) (iv) and the push-forward Γd+e(X q X/S) → Γd+e(X/S) along the
canonical morphism X qX → X is called addition of cycles [I, Def. 4.1.1].

(3.2.4) The Sym-Gamma morphism — Let X/S be a separated algebraic space
and let (X/S)d = X ×S X ×S · · · ×S X. There is an integral surjective morphism
ΨX : (X/S)d → Γd(X/S), given by addition of cycles, invariant under the permu-
tation of the factors. This gives a factorization (X/S)d → Symd(X/S) → Γd(X/S)
and we denote the second morphism by SGX [I, Prop. 4.1.5].

(3.2.5) Local description of the scheme of divided powers — If U ⊆ X is an open
subset, then we have already seen that Γd(U/S) ⊆ Γd(X/S) is an open subset.
Moreover, there is a cartesian diagram

(U/S)d

��

// Symd(U/S)

��

SGU // Γd(U/S)

��

(X/S)d // Symd(X/S)
SGX //

�

Γd(X/S).

�

If X/S is an AF-scheme, then there are Zariski-covers S =
⋃
Sα and X =

⋃
Uα of

affine schemes such that Γd(X/S) =
⋃

Γd(Uα/Sα). This gives a local description
of the SG-map. For an arbitrary separated algebraic space X/S there is a similar
étale-local description of SG. If U → X is an étale morphism, then there is a
cartesian diagram

(U/S)d|fpr

��

// Symd(U/S)|fpr

��

// Γd(U/S)|reg

��

(X/S)d // Symd(X/S) //

�

Γd(X/S)

�

where the vertical arrows are étale [I, Prop. 4.2.4]. Here fpr and reg denotes the
open locus where the corresponding maps are fixed-point reflecting and regular. If∐
Uα → X is an étale cover, then

∐
Γd(Uα/S)|fpr → Γd(X/S) is an étale cover.

Thus, we have an étale-local description of SG in affine schemes.
We now give a similar treatment of Γd(X/S) for X = Proj(B) projective as that

given for Symd(X/S) in the previous section.
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Proposition (3.2.6). Let S = Spec(A) where A is affine and let X = Proj(B)
where B is a graded A-algebra finitely generated in degree one. Then Γ(X/S) is
covered by open subsets of the form Γd(Xf/S) with f ∈ Bn for some n. If every
residue field of S has at least d elements, then is enough to consider open subsets
with n = 1.

Proof. Follows from Proposition (3.1.7) using that ΨX((Xf/S)d) = Γd(Xf/S). �

Proposition (3.2.7). Let A be a ring and B a graded A-algebra finitely generated
in degree one. Let W = Proj

(⊕
k≥0 ΓdA(Bk)

)
. Then W is covered by the open

subsets of the form Wγd(b) where b ∈ Bn for some n. If every residue field of
S = Spec(A) has at least d elements, then is enough to consider open subsets with
b ∈ B1.

Proof. Let F be a graded flat A-algebra with a surjection F � B. Consider the
induced surjective homomorphism

⊕
k≥0 ΓdA(Fk) �

⊕
k≥0 ΓdA(Bk) and the corre-

sponding closed immersion W ↪→ W ′ = Proj
(⊕

k≥0 ΓdA(Fk)
)
. The open subset of

W ′ = Symd(Proj(F )/S) given by γd(f) = 0, where f ∈ Fn, coincides with the
open subset Symd(Proj(F )f/S). These subsets cover W ′ by Corollary (3.1.8). The
proposition follows immediately. �

Corollary (3.2.8). Let S be any scheme and let A be a graded quasi-coherent
OS-algebra of finite type generated in degree one. Then Γd

(
Proj(A)/S

)
and W =

Proj
(⊕

k≥0 ΓdA(Ak)
)

are canonically isomorphic. Under this isomorphism, the open
subset Γd

(
Proj(A)f

)
is identified with Wγd(f) for any homogeneous element f ∈ A.

Proof. By Propositions (3.2.6) and (3.2.7) the open subsets Γd
(
Spec

(
A(f)

))
and

Wγd(f) for f ∈ An, covers Γd(Proj(A)) and W respectively. As these subsets are
canonically isomorphic the corollary follows. �

Proposition (3.2.9). Let S be any scheme and let A be a graded quasi-coherent
OS-algebra of finite type generated in degree one. Let D =

⊕
k≥0 ΓdA(Ak). Let N be

a positive integer and let DN be the subring of D(N) =
⊕

k≥0 ΓdA(ANk) generated
by ΓdA(AN ). The inclusion DN ↪→ D(N) induces a morphism ψN : Proj(D) →
Proj(DN ). Furthermore

(i) If A is locally generated by at most r + 1 elements and N ≥ r(d− 1) then
ψN is an isomorphism.

(ii) If S is purely of characteristic zero, i.e., a Q-scheme, then ψN is an iso-
morphism for every N .

Proof. The statements are local on S so we may assume that S = Spec(A) is
affine and A = B̃ where B is a graded A-algebra finitely generated in degree one.
Choose a surjection B′ = A[x0, x1, . . . , xr] � B. Let D =

⊕
k≥0 ΓdA(Bk), D′ =⊕

k≥0 ΓdA(B′k) and let DN and D′
N be the subrings of D(N) and D′(N) generated
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by degree one elements. Then we have a commutative diagram

(3.2.9.1)

D′
N

// //
� _

��

DN� _

��

D′(N) // // D(N).

◦

By Corollary (3.1.11) the inclusion D′
N ↪→ D′(N) induces a morphism

ψ′N : Proj
(
D′(N)

)
→ Proj(D′

N )

having properties (i) and (ii). From the commutative diagram (3.2.9.1) it follows
that the inclusion DN ↪→ D(N) induces a morphism ψN : Proj(D(N)) → Proj(DN )
with the same properties. �

Theorem (3.2.10). If X → S is strongly projective (resp. strongly quasi-projective)
then Γd(X/S) → S is strongly projective (resp. strongly quasi-projective). If X → S
is projective (resp. quasi-projective) and S is quasi-compact and quasi-separated
then Γd(X/S) → S is projective (resp. quasi-projective).

Proof. In the strongly projective (resp. strongly quasi-projective) case we imme-
diately reduce to the case where X = PS(L) for some locally free OS-module L
of finite rank r + 1, using the push-forward (3.2.2), and the result follows from
Theorem (3.1.12).

If S is quasi-compact and quasi-separated and X → S is projective (resp. quasi-
projective) then there is a closed immersion (resp. immersion) X ↪→ PS(E) for some
quasi-coherent OS-module E of finite type. It is enough to show that Γ(PS(E)) is
projective. As Γ(PS(E)) = Proj

(⊕
k≥0 Γd(Sk(E)

)
by Corollary (3.2.8), this follows

from Proposition (3.2.9) and the quasi-compactness of S. �

3.3. The Chow scheme. Let k be a field and let E be a vector space over k with
basis x0, x1, . . . , xn. Let E∨ be the dual vector space with dual basis y0, y1, . . . , yn.
Let X = P(E) = Pnk . If k′/k is a field extension then a point x : Spec(k′) → X
is given by coordinates (x0 : x1 : · · · : xn) in k′. To x we associate the Chow form
Fx(y0, y1, . . . , yn) =

∑n
i=0 xiyi ∈ k′[y0, y1, . . . , yn] which is defined up to a constant.

A zero-cycle onX = Pnk is a formal sum of closed points. To any zero-dimensional
subscheme Z ↪→ X we associate the zero-cycle [Z] defined as the sum of its points
with multiplicities. If Z =

∑
j aj [zj ] is a zero-cycle on X and k′/k a field extension

then we let Zk′ = Z ×k k′ =
∑
j aj [zj ×k k′]. It is clear that if Z ↪→ X is a

zero-dimensional subscheme then [Z]×k k′ = [Z ×k k′].
We say that a cycle is effective if its coefficients are positive. The degree of a

cycle Z =
∑
j aj [zj ] is defined as deg(Z) =

∑
j aj deg

(
k(zj)/k

)
. It is clear that

deg(Zk′) = deg(Z) for any field extension k′/k.
Let Z be an effective zero-cycle on X and choose a field extension k′/k such that

Zk′ =
∑
j aj [z

′
j ] is a sum of k′-points, i.e., k(z′j) = k′. We then define its Chow

form as FZ =
∏
j F

aj

z′j
. It is easily seen that
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(i) FZ does not depend on the choice of field extension k′/k.
(ii) FZ has coefficients in k.
(iii) The degree of FZ coincides with the degree of Z.
(iv) Z is determined by FZ .

Further, if k is perfect there is a correspondence between zero-cycles of degree d on
X and Chow forms of degree d, i.e., homogeneous polynomials, F ∈ k[y0, y1, . . . , yn]
which splits into d linear forms after a field extension. The Chow forms of degree d
with coefficients in k is a subset of the linear forms on P

(
Sd(E∨)

)
and thus a subset

of the k-points of P
(
Sd(E∨)∨

)
= P

(
TSd(E)

)
.

(3.3.1) The Chow variety — Classically it is shown that for r ≥ 0 and d ≥ 1
there is a closed subset of P

(
Tr+1(TSd(E))

)
parameterizing r-cycles of degree d

on P(E). The Chow variety Chowr,d
(
P(E)

)
is then taken as the reduced scheme

corresponding to this subset. More generally, if S is any scheme and L is a locally
free sheaf then there is a closed subset of PS

(
Tr+1(TSd(L))

)
parameterizing r-cycles

of degree d on PS(L).
We will now show that the classical Chow variety parameterizing zero-cycles of

degree d has a canonical closed subscheme structure. We begin with the case where
S is the spectrum of a field.

(3.3.2) The Chow scheme for P(E)/k — Let k′/k be a field extension such that k′

is algebraically closed. As (P(E)/k)d → Symd(P(E)/k) is integral, it is easily seen
that a k′-point of Symd(P(E)/k) corresponds to an unordered tuple (x1, x2, . . . , xd)
of k′-points of P(E). Assigning such a tuple the Chow form of the cycle [x1]+[x2]+
· · ·+ [xd] gives a map Hom

(
k′,Symd(P(E)/k)

)
→ Hom

(
k′,P(TSd(E))

)
. It is easily

seen to be compatible with the homomorphism of algebras⊕
k≥0

Sk
(
TSd(E)

)
→

⊕
k≥0

TSd
(
Sk(E)

)
and thus extends to a morphism of schemes

Symd
(
P(E)/k

)
→ P

(
TSd(E)

)
.

It is further clear that the image of this morphism consists of the Chow forms of
degree d and that Symd

(
P(E)/k

)
→ P

(
TSd(E)

)
is universally injective and hence

a universal homeomorphism onto its image as Symd
(
P(E)/k

)
is projective. We let

Chow0,d

(
P(E)

)
be the scheme-theoretical image of this morphism.

More generally, we define Chow0,d

(
P(L)/S

)
for any locally free sheaf L on S as

follows:

Definition-Proposition (3.3.3). Let S be a scheme and L a locally free OS-sheaf
of finite type. Then the homomorphism

⊕
k≥0 SkTSdOS

(L) →
⊕

k≥0 TSdOS
(SkL)

induces a morphism

ϕL : Symd
(
P(L)/S

)
→ P

(
TSdOS

(L)
)
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which is a universal homeomorphism onto its image. We let Chow0,d

(
P(L)

)
be its

scheme-theoretic image.

Proof. The question is local so we can assume that S = Spec(A) and L = M̃
where M is a free A-module of finite rank. Corollary (3.1.11), with N = 1 and
B =

⊕
k≥0 SkM , shows that

⊕
k≥0 SkTSdA(M) →

⊕
k≥0 TSdA(SkM) induces a well-

defined morphism Symd
(
P(L)/S

)
→ P

(
TSdOS

(L)
)
.

To show that Symd
(
P(L)/S

)
→ P

(
TSdOS

(L)
)

is a universal homeomorphism onto
its image it is enough to show that it is universally injective as Symd

(
P(L)/S

)
→ S

is universally closed. As L is flat over S the symmetric product commutes with base
change and it is enough to show that Symd

(
P(L)/S

)
→ P

(
TSdOS

(L)
)

is injective
when S is a field. This was discussed above. �

If X ↪→ P(L) is a closed immersion (resp. an immersion) then the subset of
Chow0,d

(
P(L)

)
parameterizing cycles with support in X is closed (resp. locally

closed). In fact, it is the image of the morphism

(3.3.3.1) Symd(X/S) → Symd
(
P(L)/S

)
→ Chow0,d

(
P(L)

)
.

As Symd
(
P(L)/S

)
= Γd

(
P(L)/S

)
, this morphism factors through Symd(X/S) →

Γd(X/S). Moreover, as Symd(X/S) → Γd(X/S) is a homeomorphism [I, Cor. 4.2.5],
the morphism

(3.3.3.2) Γd(X/S) → Symd
(
P(L)/S

)
→ Chow0,d

(
P(L)

)
.

has the same image as (3.3.3.1). Since Γd is more well-behaved, e.g., commutes
with base change S′ → S, the following definition is reasonable:

Definition (3.3.4). Let S be any scheme and L a locally free sheaf on S. If X ↪→
P(L) is a closed immersion we let Chow0,d

(
X ↪→ P(L)

)
be the scheme-theoretic

image of Γd(X/S) ↪→ Γd
(
P(L)/S

)
→ Chow0,d

(
P(L)

)
. If X ↪→ P(L) is an immer-

sion we let Chow0,d

(
X ↪→ P(L)

)
be the open subscheme of Chow0,d

(
X ↪→ P(L)

)
corresponding to cycles with support in X.

Remark (3.3.5). Classically Chow0,d

(
X ↪→ P(L)

)
is defined as the reduced sub-

scheme of Chow0,d

(
P(L)

)
↪→ P

(
TSd(L)

)
parameterizing zero-cycles of degree d with

support in X. It is clear that this is the reduction of the scheme Chow0,d

(
X ↪→

P(L)
)

as defined in Definition (3.3.4).

Remark (3.3.6). If L is a locally free sheaf on S of finite type then by definition
Chow0,d

(
P(L)

)
is Proj(B) where B is the image of⊕

k≥0

Sk
(
TSd(L)

)
→

⊕
k≥0

TSd
(
Sk(L)

)
i.e., B is the subalgebra of

⊕
k≥0 TSd

(
Sk(L)

)
generated by degree one elements. If

X ↪→ P(L) is a closed immersion then X = Proj(A) where A is a quotient of S(L).
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The Chow scheme Chow0,d

(
X ↪→ P(L)

)
is then Proj(B) where B is the subalgebra

of
⊕

k≥0 ΓdOS
(Ak) generated by degree one elements, cf. Corollary (3.2.8).

Proposition (3.3.7). Let S be any scheme and let B be a graded quasi-coherent
OS-algebra of finite type generated in degree one. Then there is a canonical mor-
phism

ϕB : Γd
(
Proj(B)/S

)
→ P

(
ΓdOS

(B1)
)

which is a universal homeomorphism onto its image. This morphism commutes
with base change S′ → S and surjections B � B′.

Proof. The existence of the morphism follows from Proposition (3.2.9). That ϕB is
universally injective can be checked on the fibers and this is done in the beginning
of this section. The last statements follows from the corresponding statements of
the algebra of divided powers. �

Remark (3.3.6) and Proposition (3.3.7) shows that there is a natural extension
of the definition of Chow0,d

(
X ↪→ PS(L)

)
which includes the case where L need not

be locally free. In particular, we obtain a definition valid for arbitrary projective
schemes:

Definition (3.3.8). Let X/S be quasi-projective morphism of schemes and let
X ↪→ PS(E) be an immersion for some quasi-coherent OS-module E of finite type.
Let X be the scheme-theoretic image of X in PS(E) which can be written as X =
Proj(B) where B is a quotient of S(E). We let Chow0,d

(
X ↪→ PS(E)

)
be the

scheme-theoretic image of ϕB : Γd
(
Proj(B)/S

)
→ P

(
ΓdOS

(B1)
)

or equivalently, the
scheme-theoretic image of

ϕX,E : Γd
(
Proj(B)/S

)
→ P

(
ΓdOS

(B1)
)
↪→ P

(
ΓdOS

(E)
)
.

We let Chow0,d

(
X ↪→ PS(E)

)
be the open subscheme of Chow0,d

(
X ↪→ PS(E)

)
given by the image of

Γd(X/S) ⊆ Γd(X/S) → Chow0,d

(
X ↪→ PS(E)

)
.

This is indeed an open subscheme as Γd
(
X/S

)
→ Chow0,d

(
X ↪→ P(E)

)
is a home-

omorphism by Corollary (3.3.7).

Remark (3.3.9). Let S be any scheme, E a quasi-coherent OS-module and X ↪→
P(E) an immersion. Let S′ → S be any morphism and let X ′ = X ×S S′ and
E ′ = E ⊗OS

OS′ . There is a commutative diagram

Γd(X ′/S′)
ϕX′,E′

//

∼=
��

PS′(E ′)

∼=
��

Γd(X/S)×S S′
ϕX,E×S idS′ // PS(E)×S S′

◦
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i.e., ϕX′,E′ = ϕX,E ×S idS′ . As the underlying sets of Chow0,d

(
X ↪→ P(E)

)
and

Chow0,d

(
X ′ ↪→ P(E ′)

)
are the images of ϕX,E and ϕX′,E′ it follows that the canon-

ical morphism

(3.3.9.1) Chow0,d

(
X ′ ↪→ PS′(E ′)

)
↪→ Chow0,d

(
X ↪→ PS(E)

)
×S S′

is a nil-immersion, i.e., a bijective closed immersion. As the scheme-theoretic image
commutes with flat base change [EGAIV, Lem. 2.3.1] the morphism (3.3.9.1) is an
isomorphism if S′ → S is flat.

If Z ↪→ X is an immersion (resp. a closed immersion, resp. an open immersion)
then there is an immersion (resp. a closed immersion, resp. an open immersion)

Chow0,d

(
Z ↪→ PS(E)

)
↪→ Chow0,d

(
X ↪→ PS(E)

)
.

Proposition (3.3.10). Let S = Spec(A) where A is affine and such that every
residue field of S has at least d elements. Let X = Proj(B) where B is a graded
A-algebra finitely generated in degree one. Let D =

⊕
k≥0 ΓdA

(
Bk) and let E ↪→ D

be the subalgebra generated by elements of degree one. Then Chow
(
X ↪→ P(B1)

)
=

Proj(E) is covered by open subsets of the form Spec(Eγd(f)) with f ∈ B1. Fur-
thermore, Eγd(f) is the subalgebra of Γd

(
B(f)

)
generated by elements of degree one,

i.e., elements of the form ×ni=1γ
di(bi/f) with bi ∈ B1.

Proof. The first statement follows immediately from Proposition (3.2.7) taking into
account that the inclusion E ↪→ D induces a surjective morphism Proj(D) →
Proj(E) by Proposition (3.3.7). The last statement is obvious. �

4. The relations between the parameter spaces

In this section we show that the morphisms

Symd(X/S) → Γd(X/S) → Chow0,d

(
X ↪→ P(E)

)
are universal homeomorphisms with trivial residue field extensions. That the
first morphism is a universal homeomorphisms with trivial residue field exten-
sions is shown in [I]. We also briefly mention the construction of the morphism
Hilbd(X/S) → Symd(X/S).

4.1. The Sym-Gamma morphism. In this section we discuss some properties of
the canonical morphism SGX : Symd(X/S) → Γd(X/S) defined in (3.2.4). Recall
the following basic result:

Proposition (4.1.1). [I, Cor. 4.2.5] Let X/S be a separated algebraic space. The
canonical morphism SGX : Symd(X/S) → Γd(X/S) is a universal homeomorphism
with trivial residue field extensions. If S is purely of characteristic zero or X/S is
flat, then SGX is an isomorphism.

From Proposition (4.1.1) we obtain the following results which only concerns
Symd(X/S) but relies on the existence of the well-behaved functor Γd and the
morphism Symd(X/S) → Γd(X/S).



28 DAVID RYDH

Corollary (4.1.2). Let S → S′ be a morphism of schemes and X/S a separated
algebraic space. The induced morphism Symd(X ′/S′) → Symd(X/S)×S S′ is a
universal homeomorphism with trivial residue field extensions. If S′ is of char-
acteristic zero then this morphism is an isomorphism. If X ′/S′ is flat then the
morphism is a nil-immersion.

Proof. Follows from Proposition (4.1.1) and the commutative diagram

Symd(X ′/S′) //

��

Symd(X/S)×S S′

��

Γd(X ′/S′)
∼= // Γd(X/S)×S S′.

◦

�

Corollary (4.1.3). Let X/S be a separated algebraic space and Z ↪→ X a closed
subscheme. Let q : (X/S)d → Symd(X/S) be the quotient morphism. The induced
morphism Symd(Z/S) → q

(
(Z/S)d

)
is a universal homeomorphism with trivial

residue field extensions. If S is of characteristic zero then this morphism is an
isomorphism. If Z/S is flat then the morphism is a nil-immersion.

Proof. Follows from Proposition (4.1.1) and the commutative diagram

Symd(Z/S) //

��

Symd(X/S)

��

Γd(Z/S) � � // Γd(X/S).

◦

�

Let us also mention the following result.

Theorem (4.1.4). Let A be any ring, let B be an A-algebra and let d be a positive
integer. Let ϕ : ΓdA(B) → TSdA(B) be the canonical homomorphism. Then

(i) If x ∈ ker(ϕ) then d!x = 0 and xd! = 0.
(ii) If y ∈ TSdA(B) then d!y ∈ im(ϕ) and yd! ∈ im(ϕ).

Proof. This is (1.1.9) and [II, Cor. 4.7]. �

It is not difficult to prove that if every prime but p is invertible in A, then d! in
the theorem can be replaced with the highest power of p dividing d!.

Examples (4.1.5). The following examples are due to C. Lundkvist [Lun08]:

(i) An A-algebra B such that ΓdA(B) → TSdA(B) is not injective
(ii) An A-algebra B such that ΓdA(B) → TSdA(B) is not surjective
(iii) A surjection B → C of A-algebras such that TSdA(B) → TSdA(C) is not

surjective
(iv) An A-algebra B such that ΓdA(B)red ↪→ TSdA(B)red is not an isomorphism
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(v) An A-algebra B and a base change A→ A′ such that the canonical homo-
morphism TSdA(B)⊗A A′ → TSdA′(B

′) is not injective.
(vi) An A-algebra B and a base change A→ A′ such that the canonical homo-

morphism TSdA(B)⊗A A′ → TSdA′(B
′) is not surjective.

Remark (4.1.6). The seminormalization of a scheme X is a universal homemomor-
phism with trivial residue fields Xsn → X such that any universal homeomorphism
with trivial residue field X ′ → X factors uniquely through Xsn → X [Swa80]. If
Xsn = X then we say that X is seminormal. If X → Y is a morphism and X is
seminormal then X → Y factors canonically through Y sn → Y .

Using Proposition (4.1.1) it can be shown that Symd(X/S)sn = Symd(Xsn/Ssn)sn.
Corollaries (4.1.2) and (4.1.3) then show that in the fibered category of seminormal
schemes Sch sn, taking symmetric products commutes with arbitrary base change
and closed subschemes. This is a special property for Symd which does not hold
for arbitrary quotients.

4.2. The Gamma-Chow morphism. Let us first restate the contents of Propo-
sition (3.2.9) taking into account the definition of Chow0,d

(
X ↪→ P(E)

)
.

Proposition (4.2.1). Let S be a scheme, q : X → S quasi-projective and E a
quasi-coherent OS-module of finite type such that there is an immersion X ↪→ P(E).
Let k ≥ 1 be an integer. Then

(i) The canonical map

S
(
ΓdOS

(SkE)
)
→

⊕
i≥0

ΓdOS
(SkiE)

induces a morphism

ϕE,k : Γd(X/S) ↪→ Γd
(
P(E)/S

)
→ P

(
ΓdOS

(SkE)
)

which is a universal homeomorphism onto its image. The scheme-theoretical
image of ϕE,k is by definition Chow0,d

(
X ↪→ P(E⊗k)

)
.

(ii) Assume that either E is locally generated by at most r + 1 elements and
k ≥ r(d− 1) or S has pure characteristic zero, i.e., is a Q-scheme. Then
ϕE,k is a closed immersion and Γd(X/S) → Chow0,d

(
X ↪→ P(E⊗k)

)
is an

isomorphism.

Remark (4.2.2). As Γd(X/S) → Chow0,d

(
X ↪→ P(E)

)
is a universal homeomor-

phism, the topology of the Chow scheme does not depend on the chosen embedding
X ↪→ P(E).

In higher dimension, it is well-known that the Chow variety Chowr,d
(
X ↪→ P(E)

)
does not depend on the embedding X ↪→ P(E) as a set. This follows from the fact
that a geometric point corresponds to an r-cycle of degree d [Sam55, §9.4d,h]. The
invariance of the topology is also well-known, cf. [Sam55, §9.7]. This implies that
the weak normalization of the Chow variety does not depend on the embedding in
the analytic case, cf. [AN67]. This also follows from functorial descriptions of the
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Chow variety over weakly normal schemes as in [Gue96] over C or more generally
in [Kol96, §1.3]. We will now show that the residue fields of Chow0,d

(
X ↪→ P(E)

)
do not depend on the embedding.

Proposition (4.2.3). Let S, q : X → S and P(E) as in Proposition (4.2.1). The
morphism ϕE : Γd(X/S) → Chow0,d

(
X ↪→ P(E)

)
is a universal homeomorphism

with trivial residue field extensions.

Proof. We have already seen that the morphism ϕE is a universal homeomorphism.
It is thus enough to show that it has trivial residue field extensions. To show this
it is enough to show that for every point a : Spec(k) → Chow0,d

(
X ↪→ P(E)

)
with

k = ksep there exists a, necessarily unique, point b : Spec(k) → Γd(X/S) lifting a,
i.e., the diagram

Γd(X/S)
ϕE // Chow0,d

(
X ↪→ P(E)

)

Spec(k)
b

hh

a

OO

has a unique filling. By (3.2.1) (i) and Remark (3.3.9) the schemes Γd(X/S) and(
Chow0,d(X ↪→ P(E))

)
red

commute with base change, i.e.,

Γd(X/S)×S S′ = Γd(X ×S S′/S′)(
Chow0,d(X ↪→ P(E))×S S′

)
red

= Chow0,d

(
X ×S S′ ↪→ P(E ⊗OS

OS′)
)
red

for any S′ → S. We can thus assume that S = Spec(k) and hence that the image
of a is a closed point.

Let r + 1 be the rank of E . The point a then corresponds to a Chow form
Fa ∈ k[y0, y1, . . . , yr] which is homogeneous of degree d. Over k = kp

−∞
this form

factors into linear forms
Fa = F d11 F d22 . . . F dn

n

where d = d1 +d2 + · · ·+dn. Let Fj =
∑
j x

(j)
i yi and let k

(
x(j)

)
= k

(
x

(j)
0 , . . . , k

(j)
r

)
.

If we let d = pem such that p - m, then k
(
x(j)

)pe

⊆ k as F di
i is k-rational. Thus the

exponent of k
(
x(j)

)
/k is at most pe and it follows by [II, Prop. 7.6] that Γdj (X/S)

has a unique k-point bj corresponding to Fj . The k-point b = b1 + b2 + · · ·+ bn is
a lifting of a. �

Remark (4.2.4). Proposition (4.2.3) also follows from the following fact. Let k be
a field, E a k-vector space and X ↪→ Pk(E) a subscheme. Let Z be an r-cycle
on X. The residue field of the point corresponding to Z in the Chow variety
Chowr,d

(
X ↪→ P(E)

)
, the Chow field of Z, does not depend on the embedding

X ↪→ Pnk [Kol96, Prop-Def. I.4.4].
As ϕE⊗k : Γd(X/S) → Chow0,d

(
X ↪→ P(E⊗k)

)
is an isomorphism for sufficiently

large k by Proposition (4.2.1) the Chow field coincides with the corresponding
residue field of Γd(X/S).
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4.3. The Hilb-Sym morphism. The Hilbert-Chow morphism can be constructed
in several different ways. Mumford [GIT, Ch. 5 §4] constructs a morphism

Hilbd(Pn) → Divd((Pn)∨) ∼= P(O(Pn)∨(d))

from the Hilbert scheme of d points to Cartier divisors of degree d on the dual
space. This construction is a generalization of the construction of the Chow variety
and it follows immediately that the image of this morphism is the Chow variety of
Pn. As the Chow variety Chow0,d(Pn) does not coincide with Symd(Pn) = Γd(Pn)
in general, it is not clear that this construction lifts to a morphism to Symd(Pn)
or to Γd(Pn). Neeman solved this [Nee91] constructing a morphism Hilbd(Pn) →
Symd(Pn) directly without using Chow forms.

There is a natural way of constructing the “Hilbert-Chow” morphism due to
Grothendieck [FGA] and Deligne [Del73]. There is a natural map Hilbd(X/S) →
Γd(X/S) taking a flat family Z → T to its norm family [II]. We will call this
map the Grothendieck-Deligne norm map and denote it with HGX . Using that the
symmetric product coincide with the space of divided powers for X/S flat, it follows
by functoriality that the morphism Hilbd(X/S) → Γd(X/S) factors through the
symmetric product. To be precise, we have the following natural transformation:

Definition (4.3.1). Let X/S be a separated algebraic space. We let HSX :
Hilbd(X/S) → Symd(X/S) be the following morphism. Let T be an S-scheme and
f : T → Hilbd(X/S) a T -point. Then f corresponds to a subscheme Z ↪→ X ×S T
which is flat and finite over T . There is a commutative diagram

T //

(f,idT )
&&LLLLLLLLLLLL Hilbd(Z/T )

HGZ //
� _

��

Γd(Z/T )
� _

��

Symd(Z/T )

��

SGZ

∼=
oo

Hilbd(X/S)×S T
HGX // Γd(X/S)×S T Symd(X/S)×S T

SGXoo

and we let HSX(f) be the composition T → Symd(X/S)×S T → Symd(X/S).
The morphisms HSX and HGX are isomorphisms whenX/S is a smooth curve [I].

They are also both isomorphisms over the non-degeneracy locus as shown in the
next section. In [ES04, RS07], it is shown that the closure of the non-degeneracy
locus of Hilbd(X/S) — the good component — is a blow-up of either Γd(X/S) or
Symd(X/S).

5. Outside the degeneracy locus

In this section we will prove that the morphisms

Hilbd(X/S) → Symd(X/S) → Γd(X/S) → Chow0,d

(
X ↪→ P(E)

)
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are all isomorphisms over the open subset parameterizing “non-degenerated fami-
lies” of points. That the morphism HGX : Hilbd(X/S) → Γd(X/S) is an isomor-
phism over the non-degeneracy locus is shown in [II]. It is thus enough to show
that the last two morphisms are isomorphisms outside the degeneracy locus.

5.1. Families of cycles. Let k be an algebraically closed field and fix a geometric
point s : Spec(k) → S. Let α : Spec(k) → Symd(X/S) be a geometric point
above s. As (X/S)d → Symd(X/S) is integral, we have that α lifts (non-uniquely)
to a geometric point β : Spec(k) → (X/S)d. Let πi : (X/S)d → X be the ith

projection and let xi = πi ◦ β. It is easily seen that the different liftings β of α
corresponds to the permutations of the d geometric points xi : Spec(k) → X. This
gives a correspondence between k-points of Symd(X/S) and effective zero-cycles of
degree d on Xs.

As Symd(X/S) → Γd(X/S) → Chow0,d

(
X ↪→ P(E)

)
are universal homeomor-

phisms, there is a bijection between their geometric points. It is thus reasonable
to say that Symd(X/S), Γd(X/S) and Chow0,d

(
X ↪→ P(E)

)
parameterize effective

zero-cycles of degree d. Moreover, as Symd(X/S) → Γd(X/S) → Chow0,d

(
X ↪→

P(E)
)

have trivial residue field extensions, there is a bijection between k-points for
any field k.

Definition (5.1.1). Let X, S, k and s be as above. Let Z be an effective zero-
cycle of degree d on Xs. The residue field of the corresponding point in Symd(X/S),
Γd(X/S) or Chow0,d

(
X ↪→ P(E)

)
is called the Chow field of Z.

Definition (5.1.2). Let k be a field and X a scheme over k. Let k′/k and k′′/k be
field extensions of k. Two cycles Z ′ and Z ′′ on X ×k k′ and X ×k k′′ respectively,
are said to be equivalent if there is a common field extension K/k of k′ and k′′ such
that Z ′ ×k′ K = Z ′′ ×k′′ K. If Z ′ is a cycle on X ×S k′ equivalent to a cycle on
X ×S k′′ then we say that Z ′ is defined over k′′.

Remark (5.1.3). If Z is a cycle on X ×S k then the corresponding morphism
Spec(k) → Symd(X/S) factors through Spec(k) → Spec(k). Thus if Z is de-
fined over a field K then the Chow field is contained in K. Conversely it can be
shown that Z is defined over an inseparable extension of the Chow field. Thus,
in characteristic zero the Chow field of Z is the unique minimal field of definition
of Z. In positive characteristic, it can be shown that the Chow field of Z is the
intersection of all minimal fields of definitions of Z, cf. [Kol96, Thm. I.4.5] and [II,
Prop. 7.13].

Let T be any scheme and f : T → Symd(X/S), f : T → Γd(X/S) or f : T →
Chow0,d

(
X ↪→ P(E)

)
a morphism. A geometric k-point of T then corresponds to a

zero-cycle of degree d on X ×S k. The following definition is therefore natural.

Definition (5.1.4). A family of cycles parameterized by T is a T -point of either
Symd(X/S), Γd(X/S) or Chow0,d

(
X ↪→ P(E)

)
. We use the notation Z → T to
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denote a family of cycles parameterized by T and let Zt be the cycle over t, i.e.,
the cycle corresponding to k(t) → T → Symd(X/S), etc.

As Γd(X/S) commutes with base change and has other good properties it is the
“correct” parameter scheme and the morphisms T → Γd(X/S) are the “correct”
families of cycles.

5.2. Non-degenerated families.

(5.2.1) Non-degenerate families of subschemes — Let k be a field and X be a
k-scheme. If Z ↪→ X is a closed subscheme then it is natural say that Z is non-
degenerate if Zk is reduced, i.e., if Z → k is geometrically reduced. If Z is of
dimension zero then Z is non-degenerate if and only if Z → k is étale. Similarly
for any scheme S, a finite flat morphism Z → S of finite presentation is called a
non-degenerate family if every fiber is non-degenerate, or equivalently, if Z → S is
étale.

Let Z → S be a family of zero dimensional subschemes, i.e., a finite flat morphism
of finite presentation. The subset of S consisting of points s ∈ S such that the fiber
Zs → k(s) is non-degenerate is open [EGAIV, Thm. 12.2.1 (viii)]. Thus, there is an
open subset Hilbd(X/S)nd of Hilbd(X/S) parameterizing non-degenerate families.

(5.2.2) Non-degenerate families of cycles — A zero-cycle Z =
∑
i ai[zi] on a

k-scheme X is called non-degenerate if every point in the support of Zk has mul-
tiplicity one. Equivalently the multiplicities ai are all one and the field extensions
k(zi)/k are separable. It is clear that there is a one-to-one correspondence between
non-degenerate zero-cycles onX and non-degenerated zero-dimensional subschemes
of X.

Given a family of cycles Z → S, i.e., a morphism S → Symd(X/S), S →
Γd(X/S) or S → Chow0,d

(
X ↪→ P(E)

)
, we say that it is non-degenerate family if

Zs is non-degenerate for every s ∈ S.

(5.2.3) Degeneracy locus of cycles — Let X → S be a morphism of schemes
and let ∆ ↪→ (X/S)d be the big diagonal, i.e., the union of all diagonals ∆ij :
(X/S)d−1 → (X/S)d. It is clear that the image of ∆ by (X/S)d → Symd(X/S)
parameterizes degenerate cycles and that the open complement parameterizes non-
degenerate cycles. We let Symd(X/S)nd, Γd(X/S)nd and Chow0,d

(
X ↪→ P(E)

)
nd

be the open subschemes of Symd(X/S), Γd(X/S) and Chow0,d

(
X ↪→ P(E)

)
respec-

tively, parameterizing non-degenerate cycles.
We will now give an explicit cover of the degeneracy locus of Symd(X/S),

Γd(X/S) and Chow0,d

(
X ↪→ P(E)

)
. Some of the notation is inspired by [ES04,

2.4 and 4.1] and [RS07].

Definition (5.2.4). Let A be a ring and B an A-algebra. Let x = (x1, x2, . . . , xd) ∈
Bd. We define the symmetrization and anti-symmetrization operators from Bd to
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TdA(B) as follows

s(x) =
∑
σ∈Sd

xσ(1) ⊗A xσ(2) ⊗A · · · ⊗A xσ(d)

a(x) =
∑
σ∈Sd

(−1)|σ|xσ(1) ⊗A xσ(2) ⊗A · · · ⊗A xσ(d).

As s and a are A-multilinear, s is symmetric and a is alternating it follows that we
get induced homomorphisms, also denoted s and a

s : SdA(B) → TSdA(B)

a :
∧d
A(B) → TdA(B).

Remark (5.2.5). If d is invertible in A, then sometimes the symmetrization and
anti-symmetrization operators are defined as 1

d!s and 1
d!a. We will never use this

convention. In [ES04] the tensor a(x) is denoted by ν(x) and referred to as a norm
vector.

Definition (5.2.6). Let A be a ring and B an A-algebra. Let x = (x1, x2, . . . , xd) ∈
Bd and y = (y1, y2, . . . , yd) ∈ Bd. We define the following element in ΓdA(B)

δ(x,y) = det
(
γ1(xiyj)× γd−1(1)

)
ij
.

Following [RS07] we call the ideal I = IA =
(
δ(x,y)

)
x,y∈Bd , the canonical ideal.

As δ is multilinear and alternating in both arguments we extend the definition of δ
to a function

δ :
∧d
A(B)×

∧d
A(B) → S2

A

(∧d
A(B)

)
→ ΓdA(B).

Proposition (5.2.7) ([ES04, Prop. 4.4]). Let A be a ring, B an A-algebra and
x,y ∈ Bd. The image of δ(x,y) by ΓdA(B) → TSdA(B) ↪→ TdA(B) is a(x)a(y). In
particular, a(x)a(y) is symmetric.

Lemma (5.2.8) ([ES04, Lem. 2.5]). Let A be a ring and let B and A′ be A-algebras.
Let B′ = B ⊗A A′. Denote by IA ⊂ ΓdA(B) and IA′ ⊂ ΓdA′(B

′) = ΓdA(B)⊗A A′ the
canonical ideals corresponding to B and B′. Then IAA

′ = IA′ .

Lemma (5.2.9). Let S be a scheme and X and S′ be S-schemes. Let X ′ = X×SS′.
Let ϕ : Γd(X ′/S′) = Γd(X/S)×S S′ → Γd(X/S) be the projection morphism. The
inverse image by ϕ of the degeneracy locus of Γd(X/S) is the degeneracy locus of
Γd(X ′/S′).

Proof. Obvious as we know that a geometric point Spec(k) → Γd(X/S) corresponds
to a zero-cycle of degree d on X ×S Spec(k). �

Lemma (5.2.10). Let k be a field and let B be a k-algebra generated as an algebra
by the k-vector field V ⊆ B. Let k′/k be a field extension and let x1, x2, . . . , xd be
d distinct k′-points of Spec(B⊗k k′). If k has at least

(
d
2

)
elements then there is an

element b ∈ V such that the values of b at x1, x2, . . . , xd are distinct.
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Proof. For a vector space V0 ⊆ V we let B0 ⊆ B be the sub-algebra generated
by V0. There is a finite dimensional vector space V0 ⊆ V such that the images
of x1, x2, . . . , xd in Spec(B0 ⊗k k′) are distinct. Replacing V and B with V0 and
B0 we can thus assume that V is finite dimensional. It is further clear that we
can assume that B = S(V ). The points x1, x2, . . . , xd then corresponds to vectors
of V ∨ ⊗k k′ and we need to find a k-rational hyperplane which does not contain
the

(
d
2

)
difference vectors xi − xj . A similar counting argument as in the proof of

Lemma (3.1.6) shows that if k has at least
(
d
2

)
elements then this is possible. �

Proposition (5.2.11). Let A be a ring and B an A-algebra. Let V ⊂ B be an
A-submodule such that B is generated by V as an algebra. Consider the following
three ideals of ΓdA(B)

(i) The canonical ideal I1 =
(
δ(x,y)

)
x,y∈Bd .

(ii) I2 =
(
δ(x,x)

)
x∈Bd .

(iii) I3 =
(
δ(x,x)

)
x=(1,b,b2,...,bd−1), b∈V .

The closed subsets determined by I1 and I2 coincide with the degeneracy locus of
Γd

(
Spec(B)/Spec(A)

)
= Spec

(
ΓdA(B)

)
. If every residue field of A has at least

(
d
2

)
elements then so does the closed subset determined by I3.

Proof. The discussion in (5.2.3) shows that it is enough to prove that the image of
the ideals Ik by the homomorphism ΓdA(B) → TSdA(B) ↪→ TdA(B) set-theoretically
defines the big diagonal of Spec

(
TdA(B)

)
. By Proposition (5.2.7) the image of

δ(x,y) is a(x)a(y). Thus the radicals of the images of I1 and I2 equals the radical
of J =

(
a(x)

)
x∈Bd . It is further easily seen that J is contained in the ideal of

every diagonal of Spec
(
TdA(B)

)
. Equivalently, the closed subset corresponding to

J contains the big diagonal.
By Lemmas (5.2.8) and (5.2.9) it is enough to show the first part of the proposi-

tion after any base change A→ A′ such that Spec(A′) → Spec(A) is surjective. We
can thus assume that every residue field of A has at least

(
d
2

)
elements. Both parts

of the proposition then follows if we show that the closed subset corresponding to
the ideal

K =
(
a(1, b, b2, . . . , bd−1)

)
b∈V ⊆ TdA(B)

is contained in the big diagonal. As the formation of the ideal K commutes with
base changes A→ A′ which are either surjections or localizations we can replace A
with one of its residue fields and assume that A is a field with at least

(
d
2

)
elements.

Let Spec(k) : x→ Spec
(
TdA(B)

)
be a point corresponding to d distinct k-points

x1, x2, . . . , xd of Spec(B ⊗A k). Lemma (5.2.10) shows that there is an element
b ∈ V which takes d distinct values a1, a2, . . . , ad ∈ k on the d points. The value of
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a(1, b, b2, . . . , bd−1) at x is then

∑
σ∈Sd

(−1)|σ|aσ(1)−1
1 a

σ(2)−1
2 . . . a

σ(d)−1
d = det


1 a1 a2

1 . . . ad−1
1

1 a2 a2
2 . . . ad−1

2
...

...
...

. . .
...

1 ad a2
d . . . ad−1

d

 =
∏
j<i

(ai−aj)

which is non-zero. Thus x is not contained in the zero-set of K. This shows that
zero-set of K is contained in the big diagonal and hence that zero-set defined by K
is the big diagonal. �

5.3. Non-degenerated symmetric tensors and divided powers.

Lemma (5.3.1). Let A be a ring, B an A-algebra and x, y ∈
∧d
A(B). Then

ΓdA(B)δ(x,y) → TSdA(B)δ(x,y) is an isomorphism.

Proof. Denote the canonical homomorphism ΓdA(B) → TSdA(B) with ϕ. Let f ∈
TSdA(B). As the anti-symmetrization operator a : TdA(B) → TdA(B) is a TSdA(B)-
module homomorphism we have that fa(x) = a(fx). By Proposition (5.2.7)

fϕ
(
δ(x, y)

)
= fa(x)a(y) = a(fx)a(y) = ϕ

(
δ(fx, y)

)
which shows that ϕ is surjective after localizing in δ(x, y).

To show that ϕδ(x,y) is injective, it is enough to show that the composition

ΓdA(B)δ(x,y) → TSdA(B)δ(x,y) ↪→ TdA(B)δ(x,y)

is injective. Choose a surjection F � B with F a flat A-algebra and let I be the
kernel of F � B. Let J be the kernel of TdA(F ) � TdA(B).

Let f ∈ JG. As f ∈ J we can write f as a sum f1 + f2 + · · ·+ fn such that for
every i we have that fi = fi1 ⊗ fi2 ⊗ · · · ⊗ fid ∈ TdA(F ) with fij ∈ I for some j.
Choose liftings x′, y′ ∈

∧d
A(F ) of x, y ∈

∧d
A(B). Identifying ΓdA(F ) and TSdA(F ),

we have that fδ(x′, y′) = δ(fx′, y′). This is a sum of determinants with elements
in ΓdA(F ) such that in every determinant there is a row in which every element is
in the ideal γ1(I) × γd−1(1). Thus δ(fx′, y′) is in the kernel of ΓdA(F ) � ΓdA(B)
by (1.1.8). The image of f in ΓdA(B) is thus zero after multiplying with δ(x, y).
Consequently ϕ is injective after localizing in δ(x, y). �

Theorem (5.3.2). Let X/S be a separated algebraic space. Then Symd(X/S)nd →
Γd(X/S)nd is an isomorphism.

Proof. We can assume that S and X are affine (3.2.5). The theorem then follows
from Proposition (5.2.11) and Lemma (5.3.1). �

Definition (5.3.3). Let A be any ring and B = A[x1, x2, . . . , xr]. We call the
elements f ∈ ΓdA(B) of degree one, see Definition (1.3.2), multilinear or elementary
multisymmetric functions. These are elements of the form

γd1(x1)× γd2(x2)× · · · × γdn(xn)× γd−d1−···−dn(1).
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We let ΓdA(A[x1, x2, . . . , xn])mult.lin. denote the subalgebra of ΓdA(A[x1, x2, . . . , xn])
generated by multi-linear elements.

Remark (5.3.4). If the characteristic of A is zero or more generally if d! is invertible
in A, then ΓdA(A[x1, x2, . . . , xn])mult.lin. = ΓdA(A[x1, x2, . . . , xn]) by Theorem (1.3.4).

Lemma (5.3.5). Let A be a ring and B = A[x1, x2, . . . , xn]. Let b ∈ B1 and let x =
(1, b, b2, . . . , bd−1). Then

(
ΓdA(B)mult.lin.

)
δ(x,x)

↪→ ΓdA(B)δ(x,x) is an isomorphism.

Proof. Let f ∈ ΓdA(B) = TSdA(B). We will show that f is a sum of products
of multilinear elements after multiplication by a power of δ(x,x). As fδ(x,x) =
δ(fx,x) and the latter is a sum of products of elements of the type γ1(c)×γd−1(1)
we can assume that f is of this type. As c 7→ γ1(c) × γd−1(1) is linear we can
further assume that c = xα for some non-trivial monomial xα ∈ B. It will be useful
to instead assume that c = xαbk with |α| ≥ 1 and k ∈ N. We will now proceed on
induction on |α|.

Assume that |α| = 1. If k = 0 then f = γ1(xαbk) × γd−1(1) is multilinear. We
continue with induction on k to show that f ∈ ΓdA(B)mult.lin.. We have that

f = γ1(xαbk)× γd−1(1) =
(
γ1(xαbk−1)× γd−1(1)

)(
γ1(b)× γd−1(1)

)
− γ1(xαbk−1)× γ1(b)× γd−2(1)

and by induction it is enough to show that the last term is in ΓdA(B)mult.lin.. Similar
use of the relation

γ1(xαbk−`)×γ`(b)×γd−`−1(1) =
(
γ1(xαbk−`−1)×γd−1(1)

)(
γ`+1(b)×γd−`−1(1)

)
− γ1(xαbk−`−1)× γ`+1(b)× γd−`−2(1)

with 1 ≤ l ≤ d − 2 and l ≤ k − 1 shows that it is enough to consider either
γ1(xα) × γk(b) × γd−k−1(1) if k ≤ d − 1 or γ1(xαbk−d+1) × γd−1(b) if k > d −
1. The first element of these is multilinear and the second is the product of the
multilinear element γd(b) and γ1(xαbk−d)× γd−1(1) which by the induction on k is
in ΓdA(B)mult.lin..

If |α| > 1 then xα = xα
′
xα

′′
for some α′, α′′ such that |α′|, |α′′| < |α|. We have

that

f = γ1(c)× γd−1(1) =
(
γ1(xα

′
bk)× γd−1(1)

)(
γ1(xα

′′
)× γd−1(1)

)
− γ1(xα

′
bk)× γ1(xα

′′
)× γd−2(1).

By induction it is enough to show that the last term is a sum of products of
multilinear elements, after suitable multiplication by δ(x,x). Let g = γ1(xα

′
bk)×

γ1(xα
′′
)×γd−2(1). Then gδ(x,x) = δ(gx,x) which is a sum of products of elements

of the kind γ1(xα
′
bt
′
)×γd−1(1) and γ1(xα

′′
bt
′′
)×γd−1(1). By induction on |α| these

are in
(
ΓdA(B)mult.lin.

)
δ(x,x)

. �



38 DAVID RYDH

Theorem (5.3.6). Let X/S be quasi-projective morphism of schemes and let X ↪→
PS(E) be an immersion for some quasi-coherent OS-module E of finite type. Then
Γd(X/S)nd → Chow0,d

(
X ↪→ P(E)

)
nd

is an isomorphism.

Proof. As Γ commutes with arbitrary base change and Chow commutes with flat
base change we may assume that S is affine and, using Lemma (1.2.3), that every
residue field of S has at least

(
d
2

)
elements. If E ′ � E is a surjection of OS-

modules then Chow0,d

(
X ↪→ P(E)

)
= Chow0,d

(
X ↪→ P(E ′)

)
by Definition (3.3.8)

and we may thus assume that E is free. Further as Chow0,d

(
X ↪→ P(E)

)
is the

schematic image of Γd(X/S) ↪→ Γd
(
P(E)/S

)
→ Chow0,d

(
P(E)

)
we may assume

that X = P(E) = Pn.
By Proposition (3.3.10) and the assumption on the residue fields of S = Spec(A),

the scheme Chow0,d

(
P(E)

)
is covered by affine open subsets over which the mor-

phism Γd
(
P(E)/S

)
→ Chow0,d

(
P(E)

)
corresponds to the inclusion of rings

ΓdA(A[x1, x2, . . . , xn])mult.lin. ↪→ ΓdA(A[x1, x2, . . . , xn]).

The theorem now follows from Proposition (5.2.11) and Lemma (5.3.5). �
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