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Abstract. In this paper, we continue the study of the scheme of divided
powers Γd(X/S). In particular, we construct the universal family of Γd(X/S)
as a family of cycles supported on Γd−1(X/S)×S X and discuss the “Hilbert-
Chow” morphism. We also give a description of the k-points of Γd(X/S) as
effective zero-cycles with certain rational coefficients and give an alternative
description of families of zero-cycles as multivalued morphisms. Finally, we
construct sheaves of divided powers and a generalized norm functor.

Introduction

Let X/S be a separated algebraic space. In [I], a natural functor Γd
X/S from

S-schemes to sets parameterizing effective zero-cycles of degree d was introduced
and shown to be an algebraic space — the space of divided powers Γd(X/S). This is
a globalization of the algebra of divided powers and the “correct” Chow scheme of
points onX/S. Indeed, the space of divided powers commutes with base change and
coincides with the symmetric product Symd(X/S) in characteristic zero or when
X/S is flat, e.g., when X = Pn

S . In particular, we obtain a functorial description of
Symd(X/S) in the flat case.

We let Γd
1(X/S) = Γd−1(X/S) ×S X. A geometric point of Γd

1(X/S) is a zero-
cycle of degree d with one marked point. It is thus expected that the addition
morphism ΦX/S : Γd

1(X/S) → Γd(X/S), which forgets the marked point, should
be related to the universal family of Γd(X/S). When the addition morphism ΦX/S

is flat, then it has a tautological family of cycles given by the norm. Iversen [Ive70,
Thm. II.3.4] showed that if ΦX/S is flat, then ΦX/S together with the norm family
is the universal family. It should be noted that ΦX/S is rarely flat, the notable
exception being when X/S is a smooth curve. The main result of this paper is a
generalization of Iversen’s result to arbitrary X/S for which ΦX/S need not be flat.
More precisely, we construct a family of zero-cycles on ΦX/S , that is, a morphism
ϕX/S : Γd(X/S) → Γd(Γd

1(X/S)), and show that it is the universal family.

2000 Mathematics Subject Classification. Primary 14C05; Secondary 14C25.
Key words and phrases. Families of cycles, zero-cycles, divided powers, universal family, Weil

restriction, norm functor, Hilbert scheme.

1



2 DAVID RYDH

Multiplicative polynomial laws. To define the universal family, we need a cou-
ple of results on multiplicative laws. Firstly, we show in §1 that it is enough to
consider the category of polynomial A-algebras in the definition of a multiplicative
law B → C of A-algebras. Secondly, we define the norm law of a locally free alge-
bra in §3. Thirdly, we construct universal shuffle laws in §4. These are canonical
multiplicative laws Γd1

A (B)⊗ Γd2
A (B) → Γd1+d2

A (B) of degrees ((d1, d2)) for positive
integers d1 and d2. Apparently, it is difficult to directly define these laws. It is how-
ever easy to define canonical multiplicative laws TSd1

A (B)⊗TSd2
A (B) → TSd1+d2

A (B)
and we use these laws to define the universal shuffle laws. The universal shuffle law
with d1 = d− 1 and d2 = 1 will be of particular interest as this law gives a descrip-
tion of the universal family of Γd

A(B), cf. Proposition (4.10).

The universal family. From the functorial description of Γd(X/S) we have that
the identity on Γd(X/S) corresponds to a family of cycles on X parameterized by
Γd(X/S) — the universal family. The image of the universal family is a closed
subspace Zuniv of Γd(X/S) ×S X which is integral over Γd(X/S). The nilpotent
structure of this subspace is difficult to describe and we do not accomplish this.
However, in §5 we show that Zuniv is contained in the closed subscheme Γd

1(X/S) :=
Γd−1(X/S)×SX ↪→ Γd(X/S)×SX which has the same underlying topological space
as Zuniv. In fact, we construct a family of cycles on Γd

1(X/S) → Γd(X/S) and show
that this induces the identity on Γd(X/S). This result is a globalization of the
universal shuffle law in §4 described above. When Γd

1(X/S) → Γd(X/S) is flat and
generically étale then the scheme Γd

1(X/S) completely determines the universal
family.

Relation with the Hilbert scheme. In §6 we briefly mention the natural mor-
phism from the Hilbert scheme of d points onX to Γd(X/S). This morphism takes a
flat family to its determinant law and is known as the Grothendieck-Deligne norm
map. When Γd

1(X/S) is flat and generically étale over Γd(X/S), the morphism
Hilbd(X/S) → Γd(X/S) is an isomorphism. In particular, it is an isomorphism
over the non-degeneracy locus Γd(X/S)nondeg and an isomorphism when X/S is a
family of smooth curves.

Composition and products of families. In Sections 7 and 8 we define and
give the basic properties of compositions and products of families. To define the
product we have to pass to the flat case and use symmetric products, similarly as
when defining the multiplicative shuffle laws.

Points of Γd(X/S). In §9 we describe the k-points of Γd(X/S). If k is a perfect
field, then the k-points of Γd(X/S) correspond to effective zero-cycles of degree d
on Xk with integral coefficients. For an arbitrary field k there is a similar corre-
spondence if we also allow certain rational coefficients. The denominators of these
coefficients are powers of the characteristic of k and the maximal exponent allowed
is explicitly determined. This result also follows from [Kol96, Thm. I.4.5], using
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that the k-points of the space of divided powers and the Chow variety coincide, but
our proof is more direct.

Multi-morphisms. LetX be a scheme such that any set of d points is contained in
an affine open subset, e.g., let X be quasi-projective. There is then another striking
description of families of zero-cycles of degree d on X parameterized by any space
T , that is, of morphisms T → Γd(X/S). We show that a family can be described
as a multi-morphism f : T → X of degree d. This consists of a multivalued map
f : T → X together with a semi-local multiplicative law θ : OX → f∗OT . The
formalism is very close to that of ordinary morphisms of schemes. The condition
on X is used to ensure that for every point t ∈ T the set f(t) ⊆ X is contained
in an affine subset. Similarly, a morphism of algebraic spaces f : T → X cannot
be described as a morphism of locally ringed spaces unless every point in X has an
affine neighborhood, that is, unless X is a scheme.

Norm functor and Weil restriction. Let f : X → Y be a morphism. The
Weil restriction RX/Y is a functor from X-schemes to Y -schemes defined by the
property HomY (T,RX/Y (W )) = HomX(T ×Y X,W ). The existence of the Weil
restriction of W , under suitable conditions on f and W , can be established using
Hilbert schemes [FGA, BLR90, Ryd08]. The norm functor NX/Y is a closely related
functor which can be defined not only for X-schemes but also for sheaves on X.
The existence of the norm functor is shown using a space or a sheaf of divided
powers. The classical setting is when X/Y is flat of constant rank d and L is an
invertible sheaf on X [EGAII, §6.5]. For affine schemes and X/Y flat, the norm
functor has been studied intensively by Ferrand [Fer98] and we generalize some of
these results.

Notation and conventions. We denote a closed immersion of schemes or alge-
braic spaces with X ↪→ Y . When A and B are rings or modules we use A ↪→ B
for an injective homomorphism. We let N denote the set of non-negative integers
0, 1, 2, . . . and use the notation ((a, b)) =

(
a+b

a

)
for binomial coefficients.
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1. Determination of a multiplicative law

Recall [Rob63] that a polynomial law F : M → N is a set of maps FA′ :
M ⊗A A′ → N ⊗A A′ for every A-algebra A′ which are natural with respect to
A-algebra homomorphisms. The law F is homogeneous of degree d if FA′(a′x′) =
a′dFA′(x′) for every A-algebra A′ and elements a′ ∈ A′ and x′ ∈ M ⊗A A′. If
M and N are A-algebras, then we say that F is multiplicative if FA′(1) = 1 and
FA′(x′y′) = FA′(x′)FA′(y′) for every A-algebra A′ and every x′, y′ ∈M ⊗A A′.

In some cases, cf. §§3–4, it is not clear that a natural map M → N extends
functorially to any base change. The following proposition shows that it is enough
to consider polynomial base changes.

Proposition (1.1). Let M and N be A-modules.
(i) In the definition of polynomial laws we can replace the category A–Alg

of A-algebras with the full subcategory of polynomial rings over A. To
be precise, there is a one-to-one correspondence between polynomial laws
F : M → N and sets of maps

Fn : M [t1, t2, . . . , tn] → N [t1, t2, . . . , tn], n ∈ N
such that Fm◦(idM⊗ϕ) = (idN⊗ϕ)◦Fn for any A-algebra homomorphism
ϕ : A[t1, t2, . . . , tn] → A[t1, t2, . . . , tm]. This correspondence is given by
F 7→ (FA[t1,t2,...,tn])n∈N.

(ii) If (Fn) is homogeneous of degree d, that is, if Fn(az) = adFn(z) for every
n ≥ 0, a ∈ A[t1, t2, . . . , tn] and z ∈M [t1, t2, . . . , tn], then the corresponding
polynomial law F is homogeneous of degree d.

In particular, in the definition of (homogeneous) polynomial laws, it is enough to
consider smooth A-algebras.
Proof. (i) It is immediately seen that to give a set of maps {Fn}n for n ∈ N com-
muting with A-algebra homomorphisms ϕ as in the proposition is equivalent to give
a single map F ′ : M [t1, t2, . . . ] → N [t1, t2, . . . ] such that for every endomorphism
ϕ of A[t1, t2, . . . ] the diagram

(1.1.1)

M [t1, t2, . . . ]
idM⊗ϕ

//

F ′

��

M [t1, t2, . . . ]

F ′

��

N [t1, t2, . . . ]
idN⊗ϕ

// N [t1, t2, . . . ]

commutes. A map F ′ such that (1.1.1) commutes, gives a unique polynomial law
F : M → N such that F ′ = FA[t1,t2,... ] [Rob63, Prop. IV.4, p. 271]. Moreover, if
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f : ΓA(M) → N is the corresponding homomorphism, then f
(
γd1(x1)× γd2(x2)×

· · · × γdn(xn)
)

is the coefficient of td1
1 t

d2
2 . . . tdn

n in F ′(x1t1 + x2t2 + · · ·+ xntn).
(ii) Let z = x1t1 + x2t2 + · · ·+ xntn ∈M [t1, t2, . . . , tn] be a homogeneous poly-

nomial of degree one. If Fn is homogeneous of degree d then we have that

tdn+1F
′(z) = F ′(tn+1z) = (F ′ ◦ (idM ⊗ ϕ))(z) = (idN ⊗ ϕ)(F ′(z))

where ϕ is given by ti 7→ tn+1ti. It follows that F ′(z) ∈ N [t1, t2, . . . , tn] is homo-
geneous of degree d and thus that f : ΓA(M) → N factors through the projection
ΓA(M) → Γd

A(M). In particular, we have that F is homogeneous of degree d. �

Proposition (1.2). Let B and C be A-algebras. In the correspondence between
polynomial laws F : B → C and sets of maps (Fn) as in Proposition (1.1), mul-
tiplicative polynomial laws correspond to multiplicative maps, i.e., maps (Fn) such
that

(i) Fn(1B) = 1C .
(ii) Fn(xy) = Fn(x)Fn(y), ∀x, y ∈ B[t1, t2, . . . , tn].

In particular, in the definition of a multiplicative polynomial law it is enough to
consider smooth A-algebras.
Proof. If F is a multiplicative law, then Fn = FA[t1,t2,...,tn] is multiplicative by
definition. Conversely, assume that we are given a set (Fn) of multiplicative
maps. This set of maps corresponds to a polynomial law F : B → C such that
Fn = FA[t1,t2,...,tn] by Proposition (1.1). It is clear that F (1B) = 1C . Let A′ be
an A-algebra and x, y ∈ B ⊗A A′. Then there is a positive integer n, a homo-
morphism A[t1, t2, . . . , tn] → A′ and xn, yn ∈ B[t1, t2, . . . , tn] such that xn and
yn are mapped to x and y respectively. The multiplicativity of Fn implies that
FA′(xy) = FA′(x)FA′(y). �

2. Inhomogeneous families

It is sometimes convenient to work with families which do not have constant
degree. We therefore make the following definition:

Definition (2.1). Let X/S be a separated algebraic space. We let Γ?(X/S) =∐
d≥0 Γd(X/S) and let Γ?

X/S(−) = HomS(−,Γ?(X/S)) be the corresponding func-
tor.

Thus, by definition, a morphism α : T → Γ?(X/S) corresponds to an open and
closed partition T =

∐
d≥0 Td and families αd : Td → Γd(X/S). We let

Image(α) =
∐
d≥0

Image(αd) ↪→
∐
d≥0

X ×S Td = X ×S T

and Supp(α) = Image(α)red. We say that the degree of α at t ∈ T is d if α(t) ∈
Γd(X/S).

Proposition (2.2) ([Zip86, Prop. 1.7.9 a)]). Let F : B → C be a multiplicative law
of A-algebras. Then there is an integer n, a complete set of orthogonal idempotents
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e0, e1, . . . , en in C and a canonical decomposition F = F0 +F1 +F2 + · · ·+Fn where
Fd : B → Ced is a homogeneous multiplicative law of degree d. Note that ed = 0
is possible.

Note that conversely if e0, e1, . . . , en is a complete set of orthogonal idempotents
and

(
Fd : B → Ced

)
d=0,1,...,n

are multiplicative laws of degrees 0, 1, . . . , n, then
F = F0 + F1 + · · · + Fn is a multiplicative law. In fact, F (1) =

∑
i ei = 1 and

F (x)F (y) =
∑

i Fi(x)Fi(y) = F (xy).

Theorem (2.3). Let S = Spec(A), X = Spec(B) be affine schemes and let T =
Spec(A′) be an affine S-scheme. Then there is a one-to-one correspondence between
multiplicative laws B → A′ and inhomogeneous families T → Γ?(X/S). This
correspondence takes f : T → Γ?(X/S) onto Γ(f) ◦ (γ0, γ1, γ2, . . . ) : B → A′.
The expression Γ(f) is the induced map Γ(Γ?(X/S)) =

∏
d≥0 Γd

A(B) → Γ(T ) = A′

on global sections.
Proof. As T is quasi-compact, any morphism f : T → Γ?(X/S) factors through
Γ≤n(X/S) =

∐
d≤n Γd(X/S). The theorem thus follows from Proposition (2.2). �

3. Determinant laws and étale families

Let A be a ring, B an A-algebra and M a B-module which is free of rank d as
an A-module. We then have the determinant or norm map

NB/A : B → EndA(M) → EndA(∧dM) = A

where the first map takes b to the endomorphism on M which is multiplication by
B. This map extends to a homogeneous multiplicative polynomial law which we
denote the determinant law. We can also extend this definition to B-modules M
which are locally free of rank d over A taking an open cover of Spec(A). Similarly,
if M is locally free but not of constant rank, then we obtain an inhomogeneous
multiplicative law NB/A : B → A.

Assume now that A is an integral domain with fraction field K, that B is an
A-algebra and that M is a B-module which is of finite type as an A-module but
not necessarily flat. If we let d be the generic rank of M then we have the norm
map

NB/A : B → EndA(M) → EndK(M ⊗A K) → EndK

(
∧d(M ⊗A K)

)
= K

and according to [EGAII, Prop. 6.4.3] the elements NB/A(b) are integral over A. In
particular, if A is in addition integrally closed then NB/A has image A. Under this
assumption this map extends to a determinant law as it is enough to define the mul-
tiplicative polynomial law over the integrally closed polynomial rings A[t1, . . . , tn]
by Proposition (1.2).

Definition (3.1). Let S be an algebraic space and f : X → S affine. Let F be
a quasi-coherent sheaf on X such that f∗F is a finite OS-module and one of the
following conditions holds:

(i) f∗F is a locally free OS-module.
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(ii) S is normal.
To F we associate the canonical family NF : S → Γ?(X/S) given by the determi-
nant law. To abbreviate, we let NX = NOX

when this is defined.

Proposition (3.2). Let S be an algebraic space and let X/S be finite and étale.
Then NX is the unique morphism S → Γ?(X/S) such that Supp(NX) = Xred and
such that the degree of NX at a point s ∈ S is the rank of X/S at s. Furthermore
we have that Image(NX) = X. In particular, the image of NX commutes with
arbitrary base change.

Proof. The question is local on S so we can assume that X/S is of constant rank
d. Let S′ → S be an étale cover such that X ′ = X ×S S

′ → S′ trivializes, i.e.,
such that X ′ = S′qd. It is clear that the only family S′ → Γd(X ′/S′) with support
X ′

red is the family with multiplicity one on each component. This is given by the
morphism S′ ∼= Γ1

S′(S
′)×S′d ↪→ Γd(X ′). The corresponding multiplicative law is

the multiplication map (OS′)d → OS′ which coincides with the determinant law.
Thus NX′ is the unique family with support X ′

red. As the image commutes with
étale base change, the last statement of the proposition follows. �

4. Universal shuffle laws

Recall that the A-algebra Γd
A(B) represents multiplicative polynomial laws of

degree d [Fer98, Prop. 2.5.1]. We thus have a canonical bijection

HomA–Alg

(
Γd

A(B), A′
)
→ PoldA(B,A′) = PoldA′(A′ ⊗A B,A′)

and under this correspondence, the identity on Γd
A(B) corresponds to the universal

law U : Γd
A(B) ⊗A B → Γd

A(B). There is a natural surjection, the canonical
homomorphism of Iversen,

ω : Γd
A(B)⊗A B → Γd−1

A (B)⊗A B

and we will show that U factors through ω. For this purpose, we first construct the
multiplicative shuffle law SL : Γd−1

A (B)⊗A B → Γd
A(B).

(4.1) We recall [I, 1.2.14] that the universal multiplication of laws

ρd1,d2 : Γd1+d2
A (M) → Γd1

A (M)⊗A Γd2
A (M)

is the homomorphism corresponding to the law x 7→ γd1(x)⊗ γd2(x). In particular,
we have that

(4.1.1) ρd1,d2

(
γν(x)

)
=

∑
ν1+ν2=ν

|ν1|=d1, |ν2|=d2

γν1(x)⊗ γν2(x).

(4.2) The shuffle product — For any A-module M , the product of ΓA(M) gives
A-module homomorphisms

× : Γd1
A (M)⊗A Γd2

A (M) → Γd1+d2
A (M).
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The composition of the universal multiplication of laws ρd1,d2 followed by × is
multiplication by ((d1, d2)). In particular, if ((d1, d2)) is invertible inA, then x⊗y 7→
((d1, d2))−1x×y is a retraction of ρd1,d2 . If B is an A-algebra, then × is Γd1+d2

A (B)-
linear.

(4.3) The multiplicative shuffle law — Let M be a flat A-module. The product
on ΓA(M) is then identified with the shuffle product :

× : TSd1
A (M)⊗A TSd2

A (M) → TSd1+d2
A (M)

which is given by

x× y =
∑

σ∈Sd1,d2

σ(x⊗ y)

where the sum is taken in Td1+d2
A (M). If B = M is a flat A-algebra we can replace

the sum with a product. This gives a multiplicative map

(4.3.1) SL : TSd1
A (B)⊗A TSd2

A (B) → TSd1+d2
A (B)

defined by

SL(z) =
∏

σ∈Sd1,d2

σ(z).

Indeed, the set Sd1,d2 is a set of representatives of the left cosets of the subgroup
Sd1 × Sd2 ↪→ Sd1+d2 . If z ∈ TSd1

A (B) ⊗A TSd2
A (B) then σ(z) = σ′(z) if σ and

σ′ belongs to the same left coset. As left multiplication on Sd1+d2 permutes the
cosets, it is clear that SL(z) is invariant under Sd1+d2 .

The composition of ρd1,d2 followed by SL is taking ((d1, d2))th powers and SL
extends to a multiplicative law which is homogeneous of degree ((d1, d2)). In fact,
by Proposition (1.2) it is enough to show that SL extends functorially to

SLn : TSd1
A (B)⊗A TSd2

A (B)[t1, t2, . . . , tn] → TSd1+d2
A (B)[t1, t2, . . . , tn]

which is easily seen.

Definition (4.4). Let B be a flat A-algebra. The shuffle homomorphism is the
homomorphism

Λd1,d2 : Γ((d1,d2))

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗A Γd2
A (B)

)
→ Γd1+d2

A (B)

which corresponds to the shuffle law constructed in (4.3).

Proposition (4.5). Let d1, d2 be integers and N = ((d1, d2)). The shuffle homo-
morphism, defined in (4.4) for flat A-algebras B, extends uniquely to a homomor-
phism

Λd1,d2 : ΓN

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗A Γd2
A (B)

)
→ Γd1+d2

A (B).
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for every A-algebra B such that for any homomorphism B → C of A-algebras the
following diagram is commutative

ΓN

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗A Γd2
A (B)

)
��

Λ
d1,d2
B // Γd1+d2

A (B)

��

ΓN

Γ
d1+d2
A (C)

(
Γd1

A (C)⊗A Γd2
A (C)

) Λ
d1,d2
C // Γd1+d2

A (C).

Proof. If C is an arbitrary A-algebra and B is a flat A-algebra with a surjection
B � C then the vertical arrows of the square are surjective and the upper arrow
Λd1,d2

B is given by Definition (4.4). We will verify that the composition of the
upper and right arrows factors through the left arrow and thus induces a unique
homomorphism Λd1,d2

C . As the diagram is commutative for flat A-algebras, it is then
easily seen that this definition of Λd1,d2

C is independent on the choice of flat resolution
B � C and that the diagram becomes commutative for any homomorphismB → C.

Let I be the kernel of B � C. The kernel of the left arrow in the diagram

ΓN

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗A Γd2
A (B)

)
� ΓN

Γ
d1+d2
A (C)

(
Γd1

A (C)⊗A Γd2
A (C)

)
is the Γd1+d2

A (B)-module generated by the elements

γa
(
(γb1(i)× f)⊗ (γb2(j)× g)

)
× h

with a ≥ 1, b1 + b2 ≥ 1, i, j ∈ I, f ∈ Γd1−b1
A (B), g ∈ Γd2−b2

A (B) and h ∈
ΓN−a

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗AΓd2
A (B)

)
by [I, 1.2.10]. Furthermore, replacing A with a faith-

fully flat extension we can assume that f, g and h are of the form f = γd1−b1(x),
g = γd2−b2(y) and h = γN−a(z) where x, y ∈ B and z ∈ Γd1

A (B)⊗A Γd2
A (B) [Fer98,

Lem. 2.3.1]. Finally, replacing A with A[t, u, v], it is enough to show that the
elements

γN
(
γd1(i+ tx)⊗ γd2(j + uy) + vz

)
γN

(
γd1(tx)⊗ γd2(uy) + vz

)
of ΓN

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗A Γd2
A (B)

)
have the same image in Γd1+d2

A (C). This follows

by an easy computation. �

Corollary (4.6). There exists a canonical multiplicative law F : Td
A(B) → Γd

A(B),
homogeneous of degree d!, such that the composition Td

A(B) → Γd
A(B) → Td

A(B)
maps z ∈ Td

A(B) onto
∏

σ∈Sd
σ(z).

Proof. Let SLd1,d2 : Γd1
A (B) ⊗ Γd2

A (B) → Γd1+d2
A (B) be the multiplicative law

corresponding to Λd1,d2 . Let FB : Td
A(B) → Γd

A(B) be the composition of the
laws SL1,1 ⊗A Td−2

A (B), SL2,1 ⊗A Td−3
A (B), . . . , SLd−1,1. This is a multiplica-

tive law of degree d!. Let P be a flat A-algebra with a surjection P � B. Let
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FP : Td
A(P ) → Γd

A(P ) be the multiplicative law constructed similarly. Then there
is a commutative diagram

Td
A(P ) // //

FP

��

Td
A(B)

FB

��

Γd
A(P ) // // Γd

A(B).

◦

As FP (z) =
∏

σ∈Sd
σ(z) ∈ TSd

A(P ) ∼= Γd
A(P ) for any z ∈ Td

A(P ) by construction, it
follows that for any z ∈ Td

A(B), the image of FB(z) in Td
A(B) is

∏
σ∈Sd

σ(z). �

Corollary (4.7). Let ϕ : Γd
A(B) → TSd

A(B) be the canonical homomorphism.
There is a canonical multiplicative law F : TSd

A(B) → Γd
A(B) of degree d! such

that ϕ ◦ F and F ◦ ϕ are the trivial laws of degree d!. In particular, if x ∈ ker(ϕ)
then xd! = 0 and if y ∈ TSd

A(B) then yd! ∈ im(ϕ).

(4.8) Iversen’s canonical homomorphism — Next, we consider the canonical ho-
momorphism defined by Iversen in [Ive70, Prop. I.1.5]. This is the homomorphism

ω : Γd
A(B)⊗A B → Γd−1

A (B)⊗A B

given by ρd−1,1 ⊗ idB followed by the multiplication map. In particular ω(γd(f)⊗
g) = γd−1(f)⊗ fg. Furthermore, we let

u : Γd
Γd

A(B)

(
Γd

A(B)⊗A B
) ∼=−→ Γd

A(B)⊗A Γd
A(B) → Γd

A(B)

be the composition of the canonical base-change isomorphism followed by the mul-
tiplication map. This is the homomorphism corresponding to the universal law U
given in the beginning of this section.

Proposition (4.9) ([Ive70, Prop. I.1.5]). The homomorphism ω is surjective.

Proof. It is enough to show that elements of the form
(
γd−1−k(1)× x

)
⊗ 1, where

0 ≤ k ≤ d − 1 and x ∈ Γk
A(B), are in the image of ω. When k = 0 this is clear.

We proceed by induction on k. The element
(
γd−k(1) × x

)
⊗ 1 ∈ Γd

A(B) ⊗A B is
mapped onto an element of the form(

γd−1−k(1)× x
)
⊗ 1 +

∑
α

(
γd−k(1)× yα

)
⊗ zα

by the formula (4.1.1). By the induction hypothesis it follows that the second term
belongs to the image of ω and hence so does the first term. �

The following Proposition generalizes [Ive70, Prop. I.3.1].

Proposition (4.10). We have that u = Λd−1,1 ◦ Γd
A(ω).

Proof. Let u′ = Λd−1,1 ◦ Γd(ω). As u and u′ are Γd
A(B)-algebra homomorphisms,

it is enough to show that u and u′ coincides on elements of the form γd1(1⊗ b1)×
· · ·×γdk(1⊗bk). Replacing A with the polynomial ring A[t1, t2, . . . , tk], it is further
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enough to show that u and u′ coincides on the element γd(1⊗ b′) = γd
(
1⊗ (t1b1 +

t2b2 + · · · + tkbk)
)
. This is clear as ω(1 ⊗ b′) = 1 ⊗ b′ and Λd−1,1(γd(1 ⊗ b′)) =

γd(b′). �

5. The universal family

To abbreviate, we use the notation

Γd
1(X/S) = Γd−1(X/S)×S X.

as in the introduction. This should be thought of as the space parameterizing zero-
cycles of degree d with one marked point. The addition morphism Γd

1(X/S) →
Γd(X/S), which we will denote by Φd

X/S , corresponds to forgetting the marking
of the point. We will denote the projection on the marked point Γd

1(X/S) → X
by πd. When X/S is affine, we let ϕX/S be the family of zero-cycles of degree d
on Γd

1(X/S) parameterized by Γd(X/S) given by the shuffle homomorphism Λd−1,1

of Proposition (4.5). If a geometric point α ∈ Γd(X/S) corresponds to the cycle
x1 + x2 + · · · + xd then (ϕX/S)α corresponds to the cycle (x2 + · · · + xd−1, x1) +
· · ·+ (x1 + · · ·+ xd−1, xd).

(5.1) Let X/S and U/T be separated algebraic spaces. For any commutative
diagram

(5.1.1)

U
f
//

  B
BB

BB
BB

B XT
//

��

X

��

T
g
// S

�

there is a natural commutative diagram

(5.1.2)

Γd
1(U/T )

η
//

ΦU/T ''OOOOOOOOOOO
(f∗)∗Γd

1(XT /T ) //

��

Γd
1(XT /T )

(ΦX/S)T

��

Γd(U/T )
f∗ // Γd(XT /T )

�

Proposition (5.2). Let X/S be a separated algebraic space. There is a unique
family of cycles ϕX/S of degree d on Φd

X/S such that for any commutative dia-
gram (5.1.1) with T and U affine, the pull-back of the family ϕX/S to Γd(U/T )
coincides with the push-forward of ϕU/T along η.

Proof. In what follows, all spaces are over T . If f : U → XT is any étale morphism
then we let Γd(U)reg := Γd(U/T )|reg(f) be the regular locus [I, Cor. 3.3.11]. When
f : U → XT is étale then the morphism η of diagram (5.1.2) is an isomorphism over
Γd(U)reg by [I, Cor. 3.3.11]. We let Γd

1(U)reg = Φ−1
U

(
Γd(U)reg

)
. If

∐
α Uα → XT is
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an étale cover, then in the diagram∐
α,β Γd

1(Uα ×XT
Uβ)reg

//
//

Φd
Uα×XT

Uβ
|reg

��

∐
α Γd

1(Uα)reg //

Φd
Uα
|reg

��

Γd
1(XT )

Φd
XT

��∐
α,β Γd(Uα ×XT

Uβ)reg
//
//
∐

α Γd(Uα)reg // Γd(XT )

the natural squares are cartesian [I, Cor. 3.3.11] and the horizontal sequences are
étale equivalence relations [I, Cor. 3.3.16]. If we choose a covering such that the
Uα’s are affine, then we have families ϕd

Uα×Uβ
|reg and ϕd

Uα
|reg on each component

of the two leftmost vertical arrows. By étale descent, we obtain a family ϕd
XT

on
the rightmost arrow. From the compatibility of ϕd with respect to base change and
morphisms stated in Proposition (4.5), we can glue the families ϕd

XT
for every T to

a family ϕd
X with the ascribed properties. �

Proposition (5.3). The morphism (ΦX/S , πd) : Γd
1(X/S) → Γd(X/S) ×S X is a

closed immersion.

Proof. Follows from Proposition (4.9). �

Proposition (5.4). Let X/S be a separated algebraic space. The family of zero-
cycles

(
Γd

1(X/S), ϕX/S

)
is a representative for the universal family of Γd(X/S).

Proof. We have to prove that the composition of the maps

ϕX/S : Γd(X/S) → Γd
(
Γd

1(X/S)/Γd(X/S)
)

Γd(ΦX/S , πd) : Γd
(
Γd

1(X/S)
)
↪→ Γd

(
Γd(X/S)×S X

)
π : Γd

(
Γd(X/S)×S X

)
= Γd(X/S)×S Γd(X/S) → Γd(X/S)

is the identity. This follows from Proposition (4.10). �

Remark (5.5). In general, we do not have that Γd
1(X/S) = Image(ϕX/S). It is

easily seen however that Γd
1(X/S)red = Supp(ϕX/S).

Proposition (5.6). The universal family Φd
X/S : Γd

1(X/S) → Γd(X/S) is étale of
rank d over Γd(X/S)nondeg.

Proof. This is a special case of [I, Prop. 4.1.8]. �

Corollary (5.7). Let X/S be a separated algebraic space, T an S-space and α ∈
Γd

X/S(T ) a family of cycles. If α is non-degenerate at t ∈ T then there is an open
neighborhood U 3 t such that Image(α|U ) → U is étale of degree d. In particular,
the non-degeneracy locus of α is open in T . Moreover, α|U is given by the canonical
family NImage(α|U ) and the image of α|U commutes with arbitrary base change.

Proof. Follows immediately from Propositions (3.2) and (5.6). �
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Proposition (5.8). Let X/S be a separated family of smooth curves, i.e., X/S is
a separated algebraic space, smooth of relative dimension one. Then the universal
family Φd

X/S is locally free of rank d and generically étale.

Proof. The spaces Γd
1(X/S) and Γd(X/S) are smooth of relative dimension d over

S [I, Prop. 4.3.3]. In particular, they are flat over S and we can check the statements
about Φd

X/S on the fibers. Replacing S with a point s we can thus assume that S is a
point. Then Γd(X/S) and Γd

1(X/S) are regular and in particular Cohen-Macaulay.
As Φd

X/S is finite it follows that Φd
X/S is flat, cf. [EGAIV, Prop. 15.4.2], and hence

locally free. Moreover the connected components of (X/S)d are irreducible and their
generic points are outside the diagonals. Thus Φd

X/S is generically étale of rank d,
cf. Proposition (5.6). It follows that Φd

X/S is locally free of constant rank d. �

6. The Grothendieck-Deligne norm map

In this section we briefly discuss the natural morphism Hilbd(X/S) → Γd(X/S)
taking a flat subscheme to its norm family. We will call this map the Grothendieck-
Deligne norm map as it is introduced in [FGA, No. 221, §6] and [Del73, 6.3.4].
This morphism is closely related to the Hilbert-Chow morphism [GIT, 5.4] and the
Hilbert-Sym morphism [Nee91] as discussed in [III].

Definition (6.1). Let f : X → S be a separated algebraic space and T an S-
space. Let Qcohpf(X/S)(T ) be the set of isomorphism classes of quasi-coherent
finitely presented OX -modules which are flat and have proper support over T . We
let Qcohpfd(X/S)(T ) be the subset of Qcohpf(X/S)(T ) consisting of modules G
with support finite over T such that f∗G is locally free of constant rank d.

The usual pull-back makes Qcohpf(X/S) and Qcohpfd(X/S) into contravariant
functors. It can be shown that Qcohpf(X/S) is the coarse functor to an algebraic
stack [LMB00, Thm. 4.6.2.1] but we will not use this.

We have natural transformations

Hilbd(X/S) → Qcohpfd(X/S)

Quotd(F/X/S) → Qcohpfd(X/S)

Qcohpfd(X/S) → Γd(X/S)

where the first two are forgetful morphisms and the last is given by G 7→ NG . Here
NG is the canonical family determined by G defined in (3.1). This gives morphisms
Hilbd(X/S) → Γd(X/S) and Quotd(F/X/S) → Γd(X/S).

When the canonical family is flat of rank d and generically étale, the morphism
Hilbd(X/S) → Γd(X/S) is an isomorphism [Ive70, Thm. II.3.4]. In particular
Hilbd(X/S) → Γd(X/S) is an isomorphism over Γd(X/S)nondeg and an isomorphism
if X/S is a family of smooth curves, cf. Propositions (5.6) and (5.8)
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7. Composition of families and étale projections

(7.1) Universal composition of laws — Consider the law M 7→ Γe
A(Γd

A(M)) given
by x 7→ γe(γd(x)). This law is homogeneous of degree de and thus gives a homo-
morphism

κd,e : Γde
A (M) → Γe

A(Γd
A(M)).

Let M , N and P be A-modules. Given polynomial laws F : M → N and G : N →
P homogeneous of degrees d and e respectively, we form the composite polynomial
law G◦F : M → P . If f : Γd

A(M) → N , g : Γe
A(N) → P and g∗f : Γde

A (M) → P
are the corresponding homomorphisms, we have that g ∗ f = g ◦ Γe(f) ◦ κd,e.

When M , N and P are A-algebras, then κd,e is an algebra homomorphism as
the polynomial law defining κd,e is multiplicative. When B is an A-algebra and C
a B-algebra, it is also convenient to let κd,e be the natural map

Γde
A (C) → Γe

A(Γd
A(C)) → Γe

A(Γd
B(C)).

This is the universal composition of a multiplicative law F : C → B over B
which is homogeneous of degree d and a multiplicative law G : B → A which is
homogeneous of degree e.

Definition (7.2). Let X/Y and Y/S be separated algebraic spaces. Let T be
an S-space and α ∈ Γd

X/Y (Y ×S T ) and β ∈ Γe
Y/S(T ) be families of cycles. Let

Zα = Image(α) ↪→ X ×S T and Zβ = Image(β) ↪→ Y ×S T . Composing the
corresponding laws, we obtain a morphism

T → Γde(Zα ×Y×ST Zβ/T ) ↪→ Γde(X ×S T/T )

and we let β ∗ α ∈ Γde
X/S(T ) be the corresponding family. By definition Image(β ∗

α) ↪→ Image(α)×Y×ST Image(β). It is clear that the composition (α, β) → β ∗α is
functorial in T and hence we obtain a natural transformation

∗ : Γe
Y/S(−)× Γd

X/Y (Y ×S −) → Γde
X/S(−).

of functors from S-schemes to sets. We define β ∗ α for inhomogeneous families
similarly.

Proposition (7.3). Let X/Y , Y/S be separated algebraic spaces. Let T be an
S-space and let α ∈ Γ?

X/Y (Y ×S T ) and β ∈ Γ?
Y/S(T ) be families of cycles.

(i) If f : X → X ′ is a Y -morphism, then

f∗(β ∗ α) = β ∗ f∗α.

(ii) Let g : Y ′ → Y be an S-morphism and g′ : X ′ → X be the pull-back of g
along X/Y . Let β′ ∈ Γ?

Y ′/S(T ) be a family of cycles. Then

(g∗β′) ∗ α = g′∗(β
′ ∗ g∗α)

(iii) If α′ ∈ Γ?
X/Y (Y ×S T ) and β′ ∈ Γ?

Y/S(T ) are families of cycles, then

(β + β′) ∗ α = β ∗ α+ β′ ∗ α
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β ∗ (α+ α′) = β ∗ α+ β ∗ α′.

Proof. (i) and (ii) are easily verified and (iii) follows from (i) and (ii). �

Remark (7.4). Let S = Spec(k) where k is an algebraically closed field. Let X/Y
and Y/S be algebraic spaces with families of cycles α and β of degrees d and e
respectively. Then β = y1 + y2 + · · ·+ ye and β ∗ α = αy1 + αy2 + · · ·+ αye

.
The following proposition also follows from the existence of product families in

Section 8.

Proposition (7.5). Let f : X → S be a separated morphism, let g : Y → S be
a finite and étale morphism and let α : S → Γ?(X/S) be a family of zero-cycles.
Then NY/S ∗ g∗α = α ∗ NX×SY/X .

Proof. It is enough to show the equality after a faithfully flat base change. We
can thus assume that Y = Sqn is a trivial cover. Then both sides of the identity
are equal to α1 + α2 + · · · + αn where αi is the family α on the ith component of
X ×S Y = Xqn. �

Proposition (7.6). Let Y → S be a finite étale morphism and X → Y a separated
morphism. Then the morphism of presheaves

Γ?
X/Y (Y ×S −) → Γ?

X/S(−)

given by α 7→ NY×S−∗α, is an isomorphism. In particular, if Y and S are connected
then the degree of any family α′ ∈ Γ?

X/S(T ) is a multiple of the rank of Y → S.

Proof. As the presheaves are sheaves in the étale topology, we can replace S with
an étale cover and assume that Y = Sqn is a trivial étale cover. We then have a
corresponding decomposition X =

∐n
i=1Xi and any family α′ ∈ Γ?

X/S(T ) decom-
poses as a sum α′ =

∑n
i=1 α

′
i where α′i is supported on Xi×S T . This gives a family

α = (α′i) ∈ Γ?
X/Y (Y ×S T ) which composed with the canonical family NY×ST is

α′. �

For completeness, we mention the globalization of (7.1).

Definition (7.7) (Universal composition of families). Let X/Y and Y/S be sep-
arated algebraic spaces and let d and e be positive integers. Consider the natural
projection morphisms

Γe(Γd(X/Y )/S)×S Γd(X/Y )×Y X

→ Γe(Γd(X/Y )/S)×S Γd(X/Y ) → Γe(Γd(X/Y )/S).

On the first morphism, we have the family idΓe(Γd(X/Y )/S) ×S Φd
X/Y and on the

second we have the family Φe
Γd(X/Y )/S . The composition of these families gives a

morphism
κ′ : Γe(Γd(X/Y )/S) → Γde(Γd(X/Y )×Y X/S).
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We let
κd,e

X/Y/S : Γe(Γd(X/Y )/S) → Γde(X/S)

be κ′ followed by the push-forward along the projection on the second factor.

Proposition (7.8). Let X/Y , Y/S be separated algebraic spaces, T an S-space
and let α ∈ Γd

X/Y (Y ×S T ) and β ∈ Γe
Y/S(T ) be families of cycles. Then

β ∗ α = κd,e ◦ Γe(α) ◦ (β, idT ).

Proof. Replacing X and Y with X ×S T and Y ×S T we can assume that T = S.
Let β̃ be the pull-back of the universal family Φe

Γd(X/Y )/S along Γe(α) ◦ β. Note

that κ′ ◦ Γe(α) ◦ β corresponds to the family β̃ ∗ Φd
X/Y . As β̃ is the push-forward

of β along the closed immersion α : Y → Γd(X/Y ), we have that β̃ ∗ Φd
X/Y is

the push-forward of β ∗ α along α ×Y idX : X ↪→ Γd(X/Y ) ×Y X. As κd,e is
the push-forward of κ′ along the projection Γd(X/Y ) ×Y X → X, this ends the
demonstration. �

8. Products of families

Given two families α : T → Γd(X/S) and β : T → Γe(Y/S) we construct a
product family α × β : T → Γde(X ×S Y/S). If α =

∑
i αi and β =

∑
j βj then

α× β =
∑

i,j αi × βj . Moreover, α× β = α ∗ (β ×S X) = β ∗ (α×S Y ).

Lemma (8.1). Let X/S and Y/S be separated algebraic spaces. There is a natural
action of Sd ×Se on (X/S)d ×S (Y/S)e permuting the factors. Let Symd,e(X,Y )
be the geometric quotient [Ryd07]. If either both X/S and Y/S are flat or S is a
Q-scheme, then

Symd,e(X,Y ) = Symd(X/S)×S Syme(Y/S) = Γd(X/S)×S Γe(Y/S).

Proof. Let n = d + e and consider the action of Sn on (X q Y/S)n. For any
decomposition n = d′ + e′ there is an open and closed subset (Xd′ × Y e′)q((d,e))

which is invariant under the action of Sn. The quotient of this subset is the quotient
ofXd′×Y e′ by Sd′×Se′ . IfX/S and Y/S are flat or S is a Q-scheme, then Γ = Sym
and we have that

Symn(X q Y ) =
∐

d′+e′=n

Symd′(X/S)×S Syme′(Y/S).

The identity of the lemma then follows. �

Consider the morphism

τ : (X/S)d × (Y/S)e → (X ×S Y )de

given by (πi, πj)1≤i≤d, 1≤j≤e. The composition of τ with the quotient map (X ×S

Y )de → Symde(X ×S Y ) is invariant under the action of Sd ×Se. Thus, under the
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assumptions of the lemma, there is an induced morphism

ρ : Symd(X/S)×S Syme(Y/S) → Symde(X ×S Y/S).

Proposition (8.2). The morphism ρ takes a pair of families (α, β) to the family
α ∗ (β ×S X) = β ∗ (α×S Y ).

Proof. Working étale-locally, we can assume that S = Spec(A), X = Spec(B) and
Y = Spec(C) are affine. As TSd

A(B)⊗A TSe
A(C) → Td

A(B)⊗A Te
A(C) is injective by

the lemma, it is enough to show that the description of the morphism ρ is correct for
families factoring through (X/S)d → Symd(X/S) and (Y/S)e → Syme(Y/S). Let a
and b be T -points of (X/S)d and (Y/S)e. Then a (resp. b) corresponds to sections
x1, x2, . . . , xd (resp. y1, y2, . . . , ye) of X ×S T/T (resp. Y ×S T/T ). The image
by τ of (a, b) is a T -point of (X ×S Y )de corresponding to the sections (xi, yj)ij .
Passing to the quotient, (a, b) is mapped to the pair of families (

∑
i xi,

∑
j yj) and

the image of this pair under ρ is
∑

ij(xi, yj). As the composition commutes with
addition of cycles, it is now enough to show the equality for d = e = 1 and this case
is trivial. �

Theorem (8.3). There is a canonical morphism Γd(X/S)×SΓe(Y/S) → Γde(X×S

Y/S) taking (α, β) to α× β := α ∗ (β ×S X) = β ∗ (α×S Y ).

Proof. Working étale-locally, we can assume that S, X and Y are affine. Let
X ↪→ X ′ and Y ↪→ Y ′ be closed immersions into schemes which are flat over
S. We have two morphisms Γd(X/S) ×S Γe(Y/S) → Γde(X ×S Y/S) given by
(α, β) 7→ α ∗ (β ×S X) and (α, β) 7→ β ∗ (α×S Y ) respectively. To show that these
coincide, it is enough to show that the compositions of these two morphisms with
Γde(X ×S Y/S) ↪→ Γde(X ′ ×S Y

′/S) coincide. This follows from Proposition (8.2)
as the composition commutes with push-forward. �

9. Families of zero-cycles over reduced parameter spaces

The geometric points of Γd(X/S) correspond to cycles of degree d. To be pre-
cise, if k is an algebraically closed field and s is a k-point of S, then the k-points of
Γd(X/S) over s corresponds to the effective zero-cycles of degree d on (Xs)red [I,
Cor. 3.1.9]. To determine the k-points for an arbitrary field k, we have to charac-
terize the k-points which descends to k. If k is perfect, these points are the ones
corresponding to cycles invariant under the action of the Galois group Gal(k/k).
The k-points of Γd(X/S) are thus effective zero-cycles of degree d on (Xs)red where
the degree is counted with multiplicity. The inseparable case is slightly more com-
plicated.

Definition (9.1). Let k ↪→ K be a finite algebraic extension. There is then a
canonical factorization into a separable extension k ↪→ ks and a purely inseparable
extension ks ↪→ K. The separable degree of K/k is [ks : k] and the inseparable
degree is [K : ks]. The exponent of K/k is the smallest positive integer n such that
Knk is separable over k, i.e., the smallest positive integer n such that Kn ⊆ ks.
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We let the quasi-degree of K/k be the product of the separable degree and the
exponent. We let the inseparable discrepancy be the quotient of the inseparable
degree with the exponent.

Remark (9.2). If k is of characteristic zero, then the inseparable degree, the expo-
nent and the inseparable discrepancy are all one. If k is of characteristic p, then
the inseparable degree, the exponent and the inseparable discrepancy are powers
of p. Let ds be the separable degree, di the inseparable degree, pe the exponent,
d = [K : k] the degree, dq the quasi-degree and δ the inseparable discrepancy. Then

d = dsdi, di = peδ, dq = dsp
e, d = dqδ.

The inseparable discrepancy is one if and only if ks ↪→ K is generated by one
element, or equivalently, if and only if k ↪→ K is generated by one element.

Example (9.3). The standard example of a field extension with exponent different
from the inseparable degree is the following: Let k = Fp(s, t) and K = k1/p =
k(s1/p, t1/p). Then K/k has inseparable degree p2 and exponent p.

Lemma (9.4). Let k ↪→ K be a finite algebraic extension of fields of characteristic
p. The exponent of K/k is the smallest power pe such that kp−e

↪→ kp−e

K is
separable.

Proof. Standard results on p-bases, cf. [Mat86, Thm. 26.7], show that if k ↪→ k′

is a separable algebraic extension then kp−e

k′ = k′p
−e

. Thus kp−e

↪→ kp−e

K is
separable if and only if kp−e

s ↪→ kp−e

s K is separable. This is equivalent to Kpe ⊆ ks,
i.e., that K/k has exponent at most pe. �

The following proposition is a reinterpretation of [Kol96, Thm. I.4.5] as will be
seen in Proposition (9.13).

Proposition (9.5). Let k ↪→ K be a finite algebraic extension with quasi-degree d.
Then k is equal to the intersection of all purely inseparable extensions k′/k such
that k′ ↪→ Kk′ has degree at most d.

Proof. Let ds and pe be the separable degree and exponent of K/k. Let k1 be the
intersection of all fields k′ such that k′/k is purely inseparable and k′ ↪→ Kk′ has
degree at most d = dsp

e. If k 6= k1 we can find an element x ∈ k1 \ k such that
xp ∈ k. Let k′ be a maximal purely inseparable extension of k such that x /∈ k′.
Then kp−e

k′ ⊆ k′(xp−e

) by [Kol96, Main Lemma I.4.5.5]. In particular the degree
of kp−e

k′/k′ is at most pe. Note that by Lemma (9.4) we have that kp−e

↪→ kp−e

K
is separable and hence has degree ds. Thus Kk′/k′ has degree at most dsp

e. This
implies that x /∈ k1 which is a contradiction. �

Proposition (9.6). Let k ↪→ K be a finite field extension. Then Γd(K/k) has at
most one k-point. It has a k-point if and only if the quasi-degree of K/k divides d.
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This k-point corresponds to the composition of the polynomial laws

Finsep : K → ks, b 7→ bd/ds

Fsep : ks → k, b 7→ Nks/k(b)

where ds is the separable degree of K/k and Nks/k : ks → k is the norm, cf. §3. In
particular, there is a k-point if [K : k] | d.
Proof. Let ds and pe be the separable degree and the exponent of K/k and ks

its separable closure. By Proposition (7.6) there is a one-to-one correspondence
between k-points of Γd(K/k) and ks-points of Γd/ds(K/ks). Replacing k with ks

and d with d/ds we can thus assume that K/k is separably closed.
Let F : K → k be a polynomial law, homogeneous of degree d. Then Kpe ⊆ k

and as F is multiplicative we have that F (b)pe

= F
(
bp

e)
=

(
bp

e)d
for any b ∈ K.

As pth roots are unique in k it follows that F (b) = bd ∈ k. As K/k is purely
inseparable, it follows that pe | d. �

Definition (9.7). Let X/S be a separated algebraic space. Given a family of zero-
cycles α on X/S parameterized by an S-space T , we define the multiplicity of α at
a point x ∈ X×S T , denoted multx(α), as follows. Let t ∈ T be the image of x in T .
The pull-back of the family to k(t) is then supported at Image(αt) = Supp(αt) =
{x1, x2, . . . , xn} and given by the morphism

αt : Spec
(
k(t)

)
→ Γd

(
Supp(αt)

)
=

∐
d1+d2+···+dn=d

n
×

i=1
Γdi

(
Spec(k(xi))

)
.

As each of the schemes Γdi
(
Spec(k(xi))

)
has at most one k(t)-point by Propo-

sition (9.6), the morphism αt is uniquely determined by the decomposition d =
d1 + d2 + · · ·+ dn. The multiplicity at xi is defined to be di/[k(xi) : k(t)] and zero
at points outside Supp(α). As the support commutes with base change we have
that

Supp(α) = {x ∈ X ×S T : multx(α) > 0}.

Definition (9.8). Let X/S be a separated algebraic space and let T be a S-space.
Given a family of zero-cycles α on X/S parameterized by T , we let its fundamental
cycle [α] be the cycle on X ×S T with coefficients in Q given by

[α] =
∑

x∈X×S(Tmax)

multx(α)
[
{x}

]
where Tmax is the set of generic points of T .

Proposition (9.9). Let X/S be a separated algebraic space and T a reduced S-
space. A family of zero-cycles α ∈ Γd

X/S(T ) is then uniquely determined by its
fundamental cycle [α]. Moreover Supp(α) = Supp

(
[α]

)
.

Proof. As every component of Z = Supp(α) dominates a component of T [I,
Thm. 2.4.6], the support of [α] coincides with the support of α. As T is reduced,
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the morphism α : T → Γd(X/S) is determined by its restriction to the generic
points of T . If ξ ∈ Tmax then αξ : k(ξ) → Γd(Supp(αξ)) is determined by the
multiplicities at the points of Supp(αξ) by Proposition (9.6). �

Definition (9.10). Let k be a field and X/k a separated algebraic space. Let Z be
a zero-cycle on X with coefficients in Q. The degree of Z at a point z ∈ Supp(Z)
is the product of the multiplicity of Z at z and [k(z) : k]. We say that Z is
quasi-integral if for any z ∈ Supp(Z) the following two equivalent conditions are
satisfied

(i) The product of multz(Z) and the inseparable discrepancy of k(z)/k is an
integer.

(ii) The degree of Z at z is an integer multiple of the quasi-degree of k(z)/k.
Note that if k is perfect then Z is quasi-integral if and only if it has integral

coefficients.

Proposition (9.11). Let k be a field and X/k a separated algebraic space. There is
a one-to-one correspondence between k-points of Γd(X/k) and quasi-integral effec-
tive zero-cycles on X of degree d. This correspondence takes a family of zero-cycles
α onto its fundamental cycle [α].

Proof. Follows from the definitions and Proposition (9.6). �

Definition (9.12). Let k be a field and X/k a separated algebraic space. Let
Z =

∑n
i=1 ai[Zi] be a zero-cycle on X with coefficients in Q. For a field extension

k′/k we define the cycle Zk′ on Xk′ = X ×k Spec(k′) as

Zk′ =
n∑

i=1

ai[Zi ×k Spec(k′)]

where [Zi ×k Spec(k′)] is the fundamental cycle of Zi ×k Spec(k′), i.e., the sum of
the irreducible components of Zi ×k Spec(k′) weighted by the lengths of the local
rings at their generic points.

If α ∈ Γd(X/k) and k′/k is a field extension, then [α]k′ = [αk′ ].

Proposition (9.13) ([Kol96, Thm. I.4.5]). Let k be a field and X/k a separated
algebraic space. Let Z be a zero-cycle on X with coefficients in Q. Then Z is quasi-
integral if and only if k is the intersection of all purely inseparable field extensions
k′ ⊇ k such that Zk′ has integral coefficients.

Proof. Follows immediately from Proposition (9.5). �

Remark (9.14). It is reasonable that an effective zero-cycle on X with integral
coefficients should give a family of zero-cycles on X/k. The above proposition
explains why fractional coefficients are also sometimes allowed. Indeed, let Z be an
effective zero-cycle on Xk with integral coefficients and let α be the corresponding
point in Γd(X/k). If k′/k is a field extensions such that Z decends to X×k Spec(k′)
with integral coefficients, then α is defined over k′. Thus the residue field of α
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has at least to be small enough to be contained in all such field extensions k′.
Proposition (9.13) states that the residue field is not smaller than this.

10. Families of zero-cycles as multivalued morphisms

In this section, we give an alternative description of families of zero-cycles on
AF-schemes as “multi-morphisms”.

Definition (10.1). A multivalued map f : X → Y is a map which to every x ∈ X
assigns a finite subset f(x) ⊆ Y . The inverse image of W ⊆ Y with respect to f is

f−1(W ) = {x ∈ X : f(x) ⊆W}.

A multivalued map f : X → Y of topological spaces is continuous if f−1(U) is
open for every open subset U ⊆ Y . A multivalued map f : X → Y is of degree at
most d if |f(x)| ≤ d for every x ∈ X.

Note that it is allowed for f(x) to be the empty set.

Definition (10.2). Let X be a topological space. A d-cover of X is an open cover
{Uα} of X such that any set of at most d points of X is contained in one of the
Uα’s. A d-sheaf on X is a presheaf F on X such that

F(U) //
∏

α F(Uα) //
//
∏

α,β F(Uα ∩ Uβ)

is exact for any open subset U ⊆ X and every d-cover {Uα} of U . In other words, a
d-sheaf is a sheaf in the Grothendieck topology on X where the covers are d-covers.
A 1-sheaf is an ordinary sheaf.

Definition (10.3). Let f : X → Y be a continuous multivalued map of degree at
most d. If F is a presheaf of sets on X we let f∗F be the presheaf U 7→ F(f−1(U))
for every open subset U ⊆ Y . If F is a k-sheaf then f∗F is a dk-sheaf. If F
is a dk-sheaf of sets on Y we let f∗F be the associated k-sheaf to the presheaf
U 7→ lim−→V⊇f(U)

F(V ), where U ⊆ X is open and the limit is over all open subsets
V ⊆ Y containing f(U). If F is a presheaf on X and Z ⊆ X is a finite subset, we
denote by

FZ = lim−→
V⊇Z

F(V )

the stalk at Z.
It is not difficult to see, as in the single-valued case, that if f : X → Y is a

continuous multivalued map of degree at most d, then f∗ and f∗ are adjoint functors
between the categories of k-sheaves on X and kd-sheaves on Y and (f∗F)x = Ff(x).

Definition (10.4). Let X and Y be ringed spaces. A multi-morphism from X to
Y is a pair (f, θ) consisting of a multivalued continuous map f : X → Y and a
multiplicative law (of presheaves) θ : OY → f∗OX over Z. We say that (f, θ) is of
degree d if θ is homogeneous of degree d.
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Remark (10.5). An ordinary morphism of ringed spaces is a multi-morphism of
degree 1. Given multi-morphisms f : X → Y and g : Y → Z we can form the
composition g ◦ f : X → Z. If f and g has degrees d and e respectively, then g ◦ f
has degree de.

Proposition (10.6). Let (f, θ) : X → Y be a multi-morphism of ringed spaces.
There is a canonical partition X =

∐
d≥0Xd of open and closed subsets Xd ⊆ X

such that f |Xd
is a multi-morphism of degree d.

Proof. This follows easily from Proposition (2.2). �

Definition (10.7). Let A be a semi-local ring and B be a local ring. A mul-
tiplicative Z-law A → B is called semi-local if the kernel of the composite law
A→ B → B/mB is the Jacobson radical of A.

Note that if Y is an AF-scheme and Z ⊆ Y is finite, then the stalk OY,Z is
semi-local.

Definition (10.8). Let X and Y be schemes. A multi-morphism from X to Y is a
multi-morphism of ringed spaces (f, θ) such that OY,f(x) is semi-local and the law
θ]

x : OY,f(x) → OX,x is semi-local for every x ∈ X.

Remark (10.9). If f : X → Y and g : Y → Z are multi-morphisms of schemes,
then g ◦ f : X → Z is a multi-morphism of schemes if OZ,g(f(x)) is semi-local for
every x ∈ X.

Proposition (10.10). Let (f, θ) : X → Y be a multi-morphism of schemes. If
(f, θ) has degree d, then the multivalued map f is of degree at most d. In particular,
there is a one-to-one correspondence between multi-morphisms of degree one and
ordinary morphisms of schemes.

Proof. If θ is of degree d then so is θ]
x. The kernel of OY,f(x) → OX,x/mx is by

assumption the Jacobson radical r of OY,f(x). Let B = OY,f(x)/r. We thus have a
non-degenerate multiplicative law B → k(x) of degree d. This law factors through
a homomorphism B → B⊗Z k(x) � B′ where B′ is a product of at most d fields [I,
Thm. 2.4.6]. As B → k(x) is non-degenerate, we have by definition that B → B′

is injective and thus B is a product of at most d fields. �

Definition (10.11). Let f = (f, θ) : X → Y be a multi-morphism of schemes
and let n be a positive integer. We denote by n · f the multi-morphism (f, θn)
from X to Y where θn is the homomorphism θ followed by taking the nth power.
If f has degree d then n · f has degree nd. More generally, if f1, f2 : X → Y are
multi-morphisms, we can define their sum f1 +f2 : X → Y as the multi-morphism
(f1 ∪ f2, θ1θ2). If OY,f1(x)∪f2(x) is semi-local, this is a multi-morphism of schemes.
If f1 and f2 have degrees d1 and d2 respectively, then f1 + f2 has degree d1 + d2.

Definition (10.12). Let X and Y be S-schemes with structure morphisms ϕX :
X → S and ϕY : Y → S. We say that a multi-morphism (f, θ) : X → Y
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is an S-multi-morphism if ϕY ◦ f = ϕX as multivalued maps and θ : OY →
f∗OX is a ϕ∗Y OS-law. Here the ϕ∗Y OS-algebra structure on f∗OX is given by the
homomorphism OS → (ϕX)∗OX = (ϕY )∗f∗OX and adjointness.

Proposition (10.13). Let ϕX : X → S and ϕY : Y → S be S-schemes. If
f : X → Y is an S-multi-morphism of degree d, then ϕY ◦ f = d · ϕX .

Proof. The law defining ϕY ◦ f is ψ : OS → (ϕY )∗OY → (ϕY )∗f∗OX . As
(ϕY )∗OY → (ϕY )∗f∗OX is an OS-law, it follows that ψ is the dth power of
OS → (ϕX)∗OX . �

It is not true, unless X is reduced, that if f : X → Y is a multi-morphism
of S-schemes such that ϕY ◦ f = d · ϕX , then f is a S-multi-morphism. This is
demonstrated by the following example.

Example (10.14). Let A = Z[x], B = A[y], C = A[ε]/ε2. Then it can be shown
that

Γ2
Z(B) =

Z[xp, xs, yp, ys, x× y]
(x× y)2 − xsys(x× y) + xpy2

s + x2
syp − 4xpyp

where xp = γ2(x), xs = x × 1, yp = γ2(y) and ys = y × 1. Let F : B → C be
a multiplicative Z-law of degree 2 and let f : Γ2

Z(B) → C be the corresponding
homomorphism. That the composite law A → B → C is a 7→ a2 · 1C is equivalent
to f(γ2(x)) = x2 and f(xs) = 2x. This implies that(

f(x× y)− xf(ys)
)2 = 0.

In particular, f(yp) = f(ys) = 0 and f(x × y) = ε defines a homomorphism such
that A→ B → C is taking squares. It is clear that F is not an A-law as this would
imply that f(x× y) = xf(ys) = 0.

Theorem (10.15). Let X/S be any scheme and Y/S be an AF-scheme. There is
a one-to-one correspondence between S-multi-morphisms f : X → Y and families
of zero-cycles, i.e., morphisms α : X → Γ?(Y/S). In this correspondence a family
of cycles α corresponds to the multi-morphism (f, θ) such that

(i) For every x ∈ X, the image f(x) is the projection of the support Supp(α×X

Spec(k(x))) ↪→ Y ×S Spec(k(x)) onto Y .
(ii) For any affine open subsets V ⊆ S and U ⊆ Y ×S V , the law

θ(U) : OY (U) → OX(f−1(U))

corresponds to the morphism

α|Γ?(U/V ) : α−1(Γ?(U/V )) → Γ?(U/V ).

Proof. To begin with, note that for any open U ⊆ Y , we have that f−1(U) =
α−1(Γ≥1(U/S)). In particular, f is continuous. It is further clear that θ is a
morphism of presheaves and that θ]

x is the law corresponding to Spec(OX,x) →
Γd(Spec(OY,f(x))) where d is the degree of α at x. This law is semi-local by the
definition of f .
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We will now construct an inverse to the mapping α → (f, θ). For this, we can
assume that S is affine and that θ is homogeneous of degree d. As Y is an AF-
scheme, there is an open affine cover {Uβ} of Y such that any d points of Y lie in
some Uβ . This induces an open affine cover {Γd(Uβ/S)} of Γd(Y/S) [I, Prop. 3.1.10].
The laws θ(Uβ) correspond to morphisms αβ : f−1(Uβ) → Γd(Uβ/S). The semi-
locality of θ ensures that if x ∈ f−1(Uβ) then the projection of Supp(αβ)x onto Uβ

is f(x). In particular, α−1
β

(
Γd(Uβ′/S)

)
= f−1(Uβ ∩ Uβ′). Thus the αβ ’s glue to a

morphism α : X → Γd(Y/S) which corresponds to (f, θ). �

Remark (10.16). Let X/S, Y/S and T/S be schemes. Given two multi-morphisms
f : T → X and g : T → Y over S, there is an induced multi-morphism (f, g) :
T → X ×S Y . This is given by taking the product α × β of the corresponding
families α and β. If f and g have degrees d and e, then (f, g) has degree de and
the composition of (f, g) and the first (resp. second) projection is e · f (resp. d · g).
In particular, π1 ◦ (f, g) = f and π2 ◦ (f, g) = g as topological maps.

11. Sheaves of divided powers

Let X/S be a separated algebraic space and let F be a quasi-coherent OX -
module. In this section we construct a canonical quasi-coherent sheaf Γd(F) on
Γd(X/S). This is a globalization of the construction of the Γd

A(B)-module Γd
A(M)

for an A-algebra B and a B-module M . The sheaf Γd(F) has been constructed by
Deligne when X/S is flat [Del73, 5.5.29].

Proposition (11.1). Let X/S be a separated algebraic space and let F be a quasi-
coherent OX-module. There is then a canonical quasi-coherent sheaf Γd(F) on
Γd(X/S). If f : X ′ → X is étale, then there is a canonical isomorphism

Γd(f−1F)|reg(f) → (f∗|reg)−1 Γd(F).

If X/S is affine, then Γd(F) is canonically isomorphic to Γd
OS

(F).

Proof. We will construct Γd(F) through étale descent via the étale equivalence
relation ∐

α,β

Γd(Uα ×X Uβ/S)|reg //
//

∐
α

Γd(Uα/S)|reg // Γd(X/S)

for an étale covering {Uα → X} [I, 3.3.16.1]. If the Uα’s are affine then so are the
Uα ×X Uβ ’s. The proposition thus follows after we have showed that

(11.1.1) Γd
OS

(f−1F)|reg(f) → (f∗|reg)−1Γd
OS

(F)

is an isomorphism for any étale morphism f : X ′ → X of affine schemes. Let
Y = V(F) = Spec(S(F)). Then

(11.1.2) Γd(Y ×X X ′/S)|reg(f) → (f∗|reg)−1Γd(Y/S)

is an isomorphism [I, Cor. 3.3.11]. As F is a direct summand of OY , it follows
from (11.1.2) that (11.1.1) is an isomorphism. �
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12. Weil restriction and the norm functor

In this section, we globalize and generalize the results of Ferrand on the norm
functor [Fer98]. Let Spec(B) → Spec(A) be a finite faithfully flat and finitely
presented morphism of constant rank d. In this situation Ferrand constructs a
norm functor NB/A from B-modules to A-modules which is uniquely determined
by the following properties:

(i) NB/A(B) = A and the image of the multiplication by b in B is the multi-
plication by NB/A(b) in A, cf. §3.

(ii) The norm functor commutes with base change, i.e., for any A-algebra A′,
denoting B′ = B ⊗A A′, we have that the functors

M 7→ NB/A(M)⊗A A′ and M 7→ NB′/A′(M ⊗B B′)

are isomorphic.

The functoriality gives a polynomial law ν : M → NB/A(M), homogeneous of
degree d, which is compatible with the polynomial law NB/A. If C is a B-algebra
then NB/A(C) is an A-algebra. Ferrand constructs NB/A(M) as the tensor product
Γd

A(M)⊗Γd
A(B) A where the Γd

A(B)-algebra structure of A is given by the determi-
nant law NB/A : B → A.

Given algebraic spaces X/S and Y/S together with a family of cycles α : Y →
Γ?(X/S) we will construct a norm functor Nα : CX → CY . Here C is one of the
following fibered categories over the category of algebraic spaces:

• The category of quasi-coherent modules QCoh.
• The category of affine schemes Aff .
• The category of separated algebraic spaces AlgSp.

In Ferrand’s setting, S = Y is affine, X/S is finite flat of constant rank d and
α = NX/S is the canonical family given by the determinant, cf. Definition (3.1).
We construct the generalized norm functor in the obvious way:

Definition (12.1). With notation as above, we let Nα(W ) = α∗Γ?(W/S) where
W ∈ CX . If W is an algebraic space, we let να(W ) be the induced family of cycles
να(W ) : Nα(W ) → Γ?(W/S) as in the diagram below:

Γ?(W/S)

��

Nα(W )
να(W )
oo

��

Γ?(X/S) Y.
αoo

�

When W is a quasi-coherent OX -module, we let να(W ) be the induced homomor-
phism Γ?(W ) → α∗Nα(W ) on Γ?(X/S).

Remark (12.2). When W/X is étale (or unramified) it is possible to define a “reg-
ular norm functor” using Nα(W )reg = α∗

(
Γ?(W/S)reg

)
.
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Remark (12.3). If Z/S is a third space and β : Z → Γe(Y/S) is a family of cycles,
there is a functorial morphism Nβ(Nα(W )) → Nα◦β(W ) but this is not always an
isomorphism, cf. [Fer98, Ex. 4.4].

When W/X is a space, it is useful to think of Nα(W ) as the pull-back of W
along the multi-morphism α as in the following diagram:

W

��

Nα(W )
να(W )
oo_ _ _

��

X Y.
αoo_ _ _ _

Proposition (12.4). With notation as above, let W/X be a space and Y ′ be a
Y -scheme. The Y ′-points of Nα(W ) corresponds to the set of liftings of the family
of cycles α×Y Y

′ to a family of cycles β : Y ′ → Γ?(W/S). In other words, it is the
set of liftings of the multi-morphism α×Y Y

′ to a multi-morphism β in the diagram

W

��

Nα(W )
να(W )
oo_ _ _

��

Nα(W )×Y Y ′oo

��

X Y
αoo_ _ _ _ Y ′.oo

β

jjU U U U U U U U U U U U

If α is non-degenerate, the lifting β is non-degenerate and the Y ′-points of Nα(W )
correspond to sections of W → X over Image(α) ×Y Y ′ ↪→ X ×S Y ′. If W/X
is unramified, the Y ′-points of Nα(W )reg correspond to sections of W → X over
Image(α×Y Y ′).

Proof. The correspondence follows from the construction of Nα(W ). The last two
assertions are immediate consequences of the definitions of non-degenerate families
and regular families [I, Defs. 4.1.6 and 3.3.3] taking into account that Image(α×Y

Y ′) = Image(α)×Y Y ′ when α is non-degenerate, cf. Corollary (5.7). �

Definition (12.5). Let X → Y and W → X be morphism of algebraic spaces.
The Weil restriction RX/Y (W ) is the functor from Y -schemes to sets that takes
an Y -scheme Y ′ to the set of sections of W ×Y Y ′ → X ×Y Y ′.

Corollary (12.6) ([Fer98, Prop. 6.2.2]). Let X → Y be a morphism and α : Y →
Γ?(X/Y ) a family of cycles. Let W be an algebraic space separated over X. There is
then a canonical morphism RX/Y (W ) → Nα(W ) which is functorial in W . Assume
that X → Y is finite and étale and that α = NX/Y is the canonical family given by
the determinant. Then the above functor is an isomorphism.

Proof. Follows immediately from Proposition (12.4) as α is non-degenerate and
hence Image(α×Y Y ′) = Image(α)×Y Y ′ = X ×Y Y ′. �

Corollary (12.7). Let f : X → Y be a finitely presented morphism such that
there exists a family of zero-cycles α : Y → Γ?(X/Y ) with Supp(α) = Xred, e.g., f
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finite and flat, or Y normal and f finite and open. If W is an étale and separated
scheme over X, then Nα(W )reg coincides with the Weil restriction RX/Y (W ). In
particular, the canonical morphism RX/Y (W ) → Nα(W ) is an open immersion.

Proof. Note that Image(α ×Y Y ′) has the same support as X ×Y Y ′. As W/X is
étale, any section of W/X over Supp(α ×Y Y ′) thus lifts to a unique section over
X ×Y Y ′. �

Example (12.8). The following counter-example, due to Ferrand [Fer98, 6.4],
shows that even if W/X is finite and étale and X/Y is finite and flat, but not
étale, it may happen that Nα(W )reg ⊆ Nα(W ) is not an isomorphism and that
Nα(W ) → Y is not étale.

Let X = Spec(L) → Y = Spec(K) correspond to an inseparable field extension
K ⊆ L of degree d. Let W = Xqd. Then there is a closed point in Nα(W )
with residue field L. This point corresponds to the family s1 + s2 + · · ·+ sl where
si : Spec(L) → W is the inclusion of the ith copy. Thus Nα(W ) → Y is not étale
and as Nα(W )reg → Y is étale the subset Nα(W )reg ⊆ Nα(W ) is proper.
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baki, 1957–1962.], Secrétariat mathématique, Paris, 1962.
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