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Why do we need compactifications?

e Cohomology of compact spaces is nice (finite
dimensional).
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Why do we need compactifications?

e Cohomology of compact spaces is nice (finite
dimensional).

e GAGA theorems (comparisons with analytic geometry)
only apply in compact setting.
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Why do we need compactifications?

e Cohomology of compact spaces is nice (finite
dimensional).

e GAGA theorems (comparisons with analytic geometry)
only apply in compact setting.
e Several constructions for non-compact spaces is done via

suitable compactifications — H;(X), trace formulae, mixed
hodge structures, Grothendieck duality, . . .
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Why do we need compactifications?

e Cohomology of compact spaces is nice (finite
dimensional).

e GAGA theorems (comparisons with analytic geometry)
only apply in compact setting.

e Several constructions for non-compact spaces is done via
suitable compactifications — H;(X), trace formulae, mixed
hodge structures, Grothendieck duality, . . .

Usually, one wants X C X where X is smooth and X \ X is snc.
This is accomplished by first choosing any compactification
X C X and then taking a resolution of singularities X — X.
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Compactification of varieties

Convention: All schemes and stacks are quasi-compact and
quasi-separated (e.g., noetherian).
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Compactification of varieties

Convention: All schemes and stacks are quasi-compact and
quasi-separated (e.g., noetherian).

Theorem (Nagata '62)

Every separated variety X /k admits an open embedding into a
complete (=compact, proper) variety X/k.
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Compactification of varieties

Convention: All schemes and stacks are quasi-compact and
quasi-separated (e.g., noetherian).

Theorem (Nagata '62)

Every separated variety X /k admits an open embedding into a
complete (=compact, proper) variety X/k.

There is also a generalization for schemes:

Theorem (Nagata '63, Deligne, Litkebohmert '93, Conrad '07)

Letf: X — Y be separated and of finite type. Then f = foj
where j: X — X is an open embedding and f: X — Y is proper.
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Proof of Nagata’s compactification theorem

Theorem (Nagata '62)

Every separated variety X /k admits an open embedding into a
complete variety X /K.
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Proof of Nagata’s compactification theorem

Theorem (Nagata '62)

Every separated variety X /k admits an open embedding into a
complete variety X /K.

<

Sketch of proof.

© Choose an open covering X = \U; Ui such that each U; has
a compactification U; C U; (e.g., choose U; affine).

A\
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Proof of Nagata’s compactification theorem

Theorem (Nagata '62)

Every separated variety X /k admits an open embedding into a
complete variety X /K.

<

Sketch of proof.

© Choose an open covering X = \U; Ui such that each U; has
a compactification U; C U; (e.g., choose U; affine).

© Use blow-ups to modify the Uys such that they glue to a
proper variety X = | J; U. Ol

4
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Proof of Nagata’s compactification theorem

Theorem (Nagata '62)

Every separated variety X /k admits an open embedding into a
complete variety X /K.

v

Sketch of proof.

© Choose an open covering X = \U; Ui such that each U; has
a compactification U; C U; (e.g., choose U; affine).

© Use blow-ups to modify the Uys such that they glue to a
proper variety X = | J; U. Ol

Lurking in the background:
e Riemann—Zariski space of valuations of K(X).
e Raynaud-Gruson'’s flatification theorem.
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Compactification of algebraic spaces

There is an analogue for algebraic spaces:

Theorem (Raoult °74)

Every separated algebraic space X /k of finite type admits an
open embedding into a proper algebraic space X /k.




Compactification Flatification and blow-ups Etalification and stacky blow-ups Toric geometry
00@00000 000 00000 00000

Compactification of algebraic spaces

There is an analogue for algebraic spaces:

Theorem (Raoult °74)

Every separated algebraic space X /k of finite type admits an
open embedding into a proper algebraic space X /k.

Sketch of proof.

For X normal, use that X = Z/G where Z is a scheme and G
is a finite group acting (not necessarily freely) on Z.
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Compactification of algebraic spaces

There is an analogue for algebraic spaces:

Theorem (Raoult °74)

Every separated algebraic space X /k of finite type admits an
open embedding into a proper algebraic space X /k.

Sketch of proof.

For X normal, use that X = Z/G where Z is a scheme and G
is a finite group acting (not necessarily freely) on Z.

For general X, use push-outs to pass from a compactification
of the normalization X to a compactification of X. O
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Compactification of Deligne—Mumford stacks

Theorem (R.)

Every separated tame DM-stack 2"/ k of finite type admits an
open embedding into a proper tame DM-stack 2 /k.
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Compactification of Deligne—Mumford stacks

Theorem (R.)

Every separated tame DM-stack 2"/ k of finite type admits an
open embedding into a proper tame DM-stack 2 /k.

Theorem (R.)
Letf: & — % be a morphism of DM-stacks. Then

f is finite type, separated and strictly tame
=
f = (proper and tame) o (open embedding)
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Tameness

Definition

A DM-stack 2" is tame if Vx € | 27|, char k(x) 1 | stab(x)].
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Tameness

Definition
A DM-stack 2" is tame if Vx € | 27|, char k(x) 1 | stab(x)].

Definition

f: & — % is strictly tame if Vy; € |9, yo € {Ve}, x € F1(¥e)

chark(yp) 1 | stab(x)|.
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Two difficulties

© We do not know how to compactify a given stack
Zariski-locally, we need to work étale-locally.
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Two difficulties

© We do not know how to compactify a given stack
Zariski-locally, we need to work étale-locally.

@ Given local compactifications, we must modify the stacky
structure in order to glue. Blow-ups are not enough.
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Two difficulties

© We do not know how to compactify a given stack
Zariski-locally, we need to work étale-locally.

@ Given local compactifications, we must modify the stacky
structure in order to glue. Blow-ups are not enough.

Remedy for @ — étale devissage (arXiv:1005.2171).
Remedy for @ — stacky blow-ups.



Compactification Flatification and blow-ups Etalification and stacky blow-ups Toric geometry
00000080 000 00000 00000

Main lemma

Lemma

Let

X — X
Jf’ O lf
v 9y
be a cartesian diagram of DM-stacks such that
o f1 2 — % Is separated, of finite type and strictly tame.
e g: %' — % s representable, étale and surjective.
Then f is tamely compactifiable if and only if f' is so.
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Main lemma
Let
X — X
Jf’ O lf
v 9

be a cartesian diagram of DM-stacks such that
o f1 2 — % Is separated, of finite type and strictly tame.
e g: %' — % s representable, étale and surjective.
Then f is tamely compactifiable if and only if f' is so.

Proof.
Use stacky blow-ups and étale devissage. Required properties
of stacky blow-ups follow from étalification. O
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Proof of compactification theorem for tame stacks

Theorem (R.)

Let % be a DM-stack and let f: 2 — % be separated, of finite
type and strictly tame. Then f has a tame compactification.

Sketch of proof.

Use Main Lemma and Riemann—Zariski spaces.
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Proof of compactification theorem for tame stacks

Theorem (R.)

Let % be a DM-stack and let f: 2 — % be separated, of finite
type and strictly tame. Then f has a tame compactification.

Sketch of proof.

© Can assume that # = Y is affine (Main Lemma). Choose
a compactification Z.ms — Y of the coarse moduli space.
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Proof of compactification theorem for tame stacks

Theorem (R.)

Let % be a DM-stack and let f: 2 — % be separated, of finite
type and strictly tame. Then f has a tame compactification.

Sketch of proof.

© Can assume that ' = Y is affine (Main Lemma). Choose
a compactification Z.ms — Y of the coarse moduli space.
Enough to compactify 2" — Zims. Can assume that
Y = Zims is affine (Main Lemma).
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Proof of compactification theorem for tame stacks

Theorem (R.)

Let % be a DM-stack and let f: 2 — % be separated, of finite
type and strictly tame. Then f has a tame compactification.

Sketch of proof.

© Can assume that ' = Y is affine (Main Lemma). Choose
a compactification Z.ms — Y of the coarse moduli space.
Enough to compactify 2" — Zims. Can assume that
Y = Zums is affine (Main Lemma).

©® Find a (stacky) X-admissible blow-up Y — Y and an étale
covering U — Y such that 2" xy U — Y has a
compactification (this is relatively easy and uses
Riemann—Zariski spaces).
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Proof of compactification theorem for tame stacks

Theorem (R.)

Let % be a DM-stack and let f: 2 — % be separated, of finite
type and strictly tame. Then f has a tame compactification.

Sketch of proof.

© Can assume that ' = Y is affine (Main Lemma). Choose
a compactification Z.ms — Y of the coarse moduli space.
Enough to compactify 2" — Zims. Can assume that
Y = Zums is affine (Main Lemma).

©® Find a (stacky) X-admissible blow-up Y — Y and an étale
covering U — Y such that 2" xy U — Y has a
compactification (this is relatively easy and uses
Riemann—Zariski spaces).

©® Conclude by Main Lemma. O
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@ Flatification and blow-ups
Blow-ups
Flatification via blow-ups (Raynaud—Gruson)
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Blow-ups

Let p: X — Y be a morphism between schemes (or stacks).

e We say that p is a modification if p is proper and
birational. If p~'(U) — U is an isomorphism, then we say
that p is U-admissible.
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Blow-ups

Let p: X — Y be a morphism between schemes (or stacks).

e We say that p is a modification if p is proper and
birational. If p~'(U) — U is an isomorphism, then we say
that p is U-admissible.

e We say that p is a blow-up if there exists a (finite type)

ideal T C Oy such that X = BIrY = Projy (07" ).
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Blow-ups

Let p: X — Y be a morphism between schemes (or stacks).

e We say that p is a modification if p is proper and
birational. If p~'(U) — U is an isomorphism, then we say
that p is U-admissible.

e We say that p is a blow-up if there exists a (finite type)

ideal T C Oy such that X = BIrY = Projy (07" ).

e |f in addition U C Y is an open subscheme such that
T|y = Oy (so that p~'(U) — U is an isomorphism) then
we say that p is U-admissible.
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Flatification

Theorem (Raynaud—Gruson ’71)

Letf: X — Y be a finite type morphism of schemes such that
f \U is flat for some open U C Y. Then 3 U-admissible blow-up
Y — Y such that the strict transform f: X — Y is flat.
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Theorem (Raynaud—Gruson ’71)

Letf: X — Y be a finite type morphism of schemes such that
f \U is flat for some open U C Y. Then 3 U-admissible blow-up
Y — Y such that the strict transform f: X — Y is flat.

X

L
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Theorem (Raynaud—Gruson ’71)

Letf: X — Y be a finite type morphism of schemes such that
f \U is flat for some open U C Y. Then 3 U-admissible blow-up
Y — Y such that the strict transform f: X — Y is flat.

X
|
Y

Y =Blz(Y) —— (ZnU=0)
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Theorem (Raynaud—Gruson ’71)

Letf: X — Y be a finite type morphism of schemes such that
f \U is flat for some open U C Y. Then 3 U-admissible blow-up
Y — Y such that the strict transform f: X — Y is flat.
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Theorem (Raynaud—Gruson ’71)

Letf: X — Y be a finite type morphism of schemes such that
f \U is flat for some open U C Y. Then 3 U-admissible blow-up
Y — Y such that the strict transform f: X — Y is flat.

;( = Blf—1(z)(X) e

X
1 -
Y =Blz(Y)—— Y (ZnU=0)

Remark: X is the closure of f~(U) in X xy Y.



Compactification Flatification and blow-ups Etalification and stacky blow-ups Toric geometry
00000000 ooe 00000 00000

Properties of blow-ups

© (Open extension)

@ (Cofinality)

© (Etale quasi-extension)

(B denotes a blow-up. Also U-admissible variants.)
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Properties of blow-ups
B
© (Open extension) For every X at
diagram of solid arrows there O J{open
exists a blow-up X — Y such that % B,y

X|y = X. [trivial]

@ (Cofinality)

© (Etale quasi-extension)

(B denotes a blow-up. Also U-admissible variants.)
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Properties of blow-ups

B

© (Open extension) For every X at
diagram of solid arrows there O J{open
exists a blow-up X — Y such that % B,y

X|y = X. [trivial]

@ (Cofinality) Every modification
f: X — Y is dominated by a
blowup. [flatification] ®

X Pox—1oy

© (Etale quasi-extension)

(B denotes a blow-up. Also U-admissible variants.)
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Properties of blow-ups

© (Open extension) For every
diagram of solid arrows there
exists a blow-up X — Y such that

X|y = X. [trivial]

@ (Cofinality) Every modification
f: X — Y is dominated by a

blowup. [flatification]

© (Etale quasi-extension) For every
diagram of solid arrows there exists
blow-ups Xo — X; and Yo — Y as
indicated. [étale devissage]

Etalification and stacky blow-ups Toric geometry

00000

X Py
O J{open
X -2,y

(B denotes a blow-up. Also U-admissible variants.)
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Outline

@© Etalification and stacky blow-ups
Root stacks
Stacky blow-ups
Tame étalification via stacky blow-ups
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Root stacks

Let D — X be a Cartier divisor and r > 1 an integer. The root
stack Xp, is an X-stack roughly defined as

Hom (T, Xp,) = {f: T — X,E € Div(T) | f*D = rE}

(for precise definition, replace divisor with line bundle + section)

v
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Root stacks

Let D — X be a Cartier divisor and r > 1 an integer. The root
stack Xp, is an X-stack roughly defined as

Hom (T, Xp,) = {f: T — X,E € Div(T) | f*D = rE}

(for precise definition, replace divisor with line bundle + section)

@ Xp is a tame Artin stack and Deligne—Mumford if p { r.
® 7: Xp, — Xisaflat (X\ D)-admissible modification.
9 (XD,r)CmS = X.

O 7 "(D)red — D is a pr-gerbe.

O If D = rE then (Xp,)"""™" = Xmom,
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Root stacks (picture)

XD,r X

Locally a ramified u,-cover:

X =Spec(A), D={z=0}, Xp, = [Spec(AlWl/W' —2)/u]
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Stacky blow-ups

Definition

Let X be a stack, let Z — X be a closed substack and r > 1 an
integer. We let Bl , X = (BIZX),:-’, where E — Bl X is the
exceptional divisor.
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Stacky blow-ups

Definition

Let X be a stack, let Z — X be a closed substack and r > 1 an
integer. We let Bl , X = (BIZX)E, where E — Bl X is the
exceptional divisor.

Definition

Let p: X — Y be a morphism between stacks. We say that p is
a stacky blow-up if there exists a (finitely presented) closed
substack Z — X and an integer r > 1 such that X = Bl , Y. If
Z N U = () for some U then p is U-admissible.
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Stacky blow-ups

Definition

Let X be a stack, let Z — X be a closed substack and r > 1 an
integer. We let Bl , X = (BIZX)E, where E — Bl X is the
exceptional divisor.

Definition

Let p: X — Y be a morphism between stacks. We say that p is
a stacky blow-up if there exists a (finitely presented) closed
substack Z — X and an integer r > 1 such that X = Bl , Y. If
Z N U = () for some U then p is U-admissible.

Caution: A sequence of blow-ups is a blow-up
(Raynaud—Gruson) but a sequence of stacky blow-ups is not a
stacky blow-up.
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Tame étalification

Theorem (R.)

Letf: X — Y be a finite type morphism of stacks such that f|y
is étale for some open U C Y and f is tamely ramified. Then 3
a commutative diagram

Sst

X—

~ B X
Y
f\y %Ssl Y

!

—

where X — X and Y — Y are sequences of stacky blow-ups
and f is étale.
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Properties of stacky blow-ups

X %Sbt Y
© (Open extension) [trivial] lOpen

7 %sst V
@ (Cofinality) Every tame stacky
modification f: X — Y'is

X By x% 14
dominated by a sequence of stacky

blow-ups. [tame étalification] Bow.
- . . , X2 %851 > X &) Y1
© (Etale quasi-extension) [étale f
devissage] O Jétale

(B4t denotes a sequence of stacky blow-ups.)
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Toric stacks

Let N = Z9 and let £ C Ny be a rational simplicial fan.

To ¥ we associate the toric variety Xs.
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Toric stacks

Let N = Z9 and let £ C Ny be a rational simplicial fan.

To ¥ we associate the toric variety Xs. Let py, p2, ..., pn be the
rays in X and choose generators b; € p; N N of p;.
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Toric stacks

Let N = Z9 and let £ C Ny be a rational simplicial fan.

To ¥ we associate the toric variety Xs. Let pq, po, ..., pn be the
rays in X and choose generators b; € p; N N of p;.

To the stacky fan ¥ = (X, b) we associate a toric stack 2.
Toric stacks are always regular and tame.
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Toric stacks and root stacks

Let D; be the toric divisor corresponding to the ray p;. Taking
me rih root stack of D; results in the toric stack with stacky fan
> ={¥,b'} where ¥’ = ¥ and b} = b; for j # i and b} = rb;:

29 root stack of D;
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Star subdivisions

In particular, any star subdivision is obtained by first taking
some root stacks and then a blow-up in a smooth center:
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Star subdivisions

In particular, any star subdivision is obtained by first taking
some root stacks and then a blow-up in a smooth center:
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Star subdivisions

In particular, any star subdivision is obtained by first taking
some root stacks and then a blow-up in a smooth center:
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Star subdivisions

In particular, any star subdivision is obtained by first taking
some root stacks and then a blow-up in a smooth center:

Blp, 2
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Weak factorization of toric stacks

In the language of toric stacks and stacky blow-ups we have:

Theorem (Wtodarczyk '98)

© A proper birational map 25 --+ Z5 between toric stacks
factors as a sequence of stacky blow-ups and stacky
blow-downs with smooth equivariant centers.

@ A proper birational map Xy --+ Xs: between regular toric

varieties factors as a sequence of blow-ups and
blow-downs with smooth equivariant centers.
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Weak factorization

Theorem (Abramovich—Karu—Matsuki—Wtodarczyk '02, W °'03)

A proper birational map X --+ Y between regular varieties over
a field of characteristic zero, factors as a sequence of blow-ups
and blow-downs with smooth centers.
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Weak factorization

Theorem (Abramovich—Karu—Matsuki—Wtodarczyk '02, W °'03)

A proper birational map X --+ Y between regular varieties over
a field of characteristic zero, factors as a sequence of blow-ups
and blow-downs with smooth centers.

Conjecture (R.)

A proper birational map 2" --» % between regular DM-stacks
over a field of characteristic zero, factors as a sequence of
stacky blow-ups and stacky blow-downs with smooth centers.




The end
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Quasi-projective varieties and stacks

Let X/k be a variety. The following are equivalent:
© X is quasi-projective.
® 3 open embedding X C X with X projective.
© J embedding X — P}.



Quasi-projective varieties and stacks

Let X/k be a variety. The following are equivalent:
© X is quasi-projective.
® 3 open embedding X C X with X projective.
© J embedding X — P}.

Definition (char. 0)

Let 27 /k be a separated DM-stack of finite type over a field k of
characteristic zero. The stack 2" is (quasi-)projective if:

© 2 is a global quotient stack, i.e., 2" = [U/GL,] for some
algebraic space U.

@ The coarse moduli space Z.ms IS (quasi-)projective.




Quasi-projective varieties and stacks (cont.)

Theorem (Kresch '09)

Let 2" /k be a DM-stack of characteristic zero. The following
are equivalent:

© % is quasi-projective.
® 3 an open embedding 2~ C Z into a projective stack.
©® 1 an embedding 2 — & where & is a smooth projective
DM-stack.
Moreover, every smooth DM-stack with (quasi-)projective cms
is (quasi-)projective.
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