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Abstract. The principal component of the Hilbert scheme of n
points on a scheme X is the closure of the open subset parame-
terizing n distinct points. In this article we construct the princi-
pal component as a certain blow-up of the symmetric product of
X. Our construction is based on a local explicit analysis of étale
families from where the appropriate universal property, needed to
identify the principal component with the blow-up, is derived.

Introduction

The Hilbert scheme of n points in a variety X parameterizes fi-
nite subschemes of length n. When the ambient variety is a smooth
surface Fogarty showed that the Hilbert scheme of n points is again
smooth [Fog73]. However, in higher dimensions the situation is dif-
ferent. Already for the affine three-space Iarrobino showed that the
Hilbert scheme is not even irreducible for high enough n [Iar72]. It
is therefore natural to consider the irreducible component that con-
tains the open subscheme U n

X parameterizing n distinct points (see
e.g. [ES04, EV10, CEVV08, Lee08]).

From now on, let X be a general scheme. We let U n
X be the scheme

parameterizing n distinct points inX, i.e., families of closed subschemes
of X that are finite and étale of rank n. The principal component
U n

X refers to the schematic closure of U n
X inside the Hilbert scheme.

Ekedahl and Skjelnes gave a blow-up construction of U n
X [ES04]. That

work is related to the one presented here, but note that their construc-
tion uses in an essential way the existence of the Hilbert scheme. In
contrast, our approach is explicit and elementary, and produces the
principal component without using the Hilbert scheme.

By conducting a careful local analysis of étale families, we get explicit
affine schemes and formulas for the product structure of the universal
family. These affine schemes with their universal properties naturally
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patch together to form the space U n
X . Moreover, this analysis allows

us to construct a larger space G n
X containing U n

X as an open subspace.
The space U n

X sits naturally as an open subscheme of the n-fold sym-
metric product of X, and we construct G n

X as a certain blow-up of the
symmetric product. There is moreover a canonical closed subspace Z
in G n

X×X that is flat and finite of rank n over G n
X . The discriminant of

Z −→ G n
X is an effective Cartier divisor, and we refer to such a family

as generically étale. The constructed family is furthermore universal.
Specifically that means that for any closed subspace Z inX×T which is
generically étale of rank n over the arbitrary base space T , there exists
a unique morphism f : T −→ G n

X such that the pull-back f ∗Z = Z.
The universal property of Z −→ G n

X immediately gives that G n
X

equals the principal component U n
X of the Hilbert scheme.

In order to describe the contents of the present paper in more detail
let us assume that the ambient scheme X is affine. For each sequence
x1, . . . , xn of global sections of OX , there is an open subscheme of U n

X

that parameterizes closed subschemes Z in X that are finite and étale
over the base, and such that the pull-back of the sections x1, . . . , xn

form a module basis of OZ . By varying the sequences one obtains an
open covering of U n

X .
There is a well-known method to parameterize all closed subschemes

in an affine scheme X having a fixed sequence of sections x = x1, . . . , xn

as a module basis (see e.g. [GLS07] and [Poo08]). That construction,
however, does not suffice for our purposes. Instead we provide an
explicit construction of a pair of algebras A (x) −→ R(x), and we
show that this pair parameterizes closed subschemes Z in X that are
étale over the base, and where the sequence of global sections form a
basis for the module OZ . In particular, we give a basis for R(x) and
a formula for the coefficients in this basis for any element of R(x). As
our presentation is elementary, although technical, it is a bit striking
that this description was not to be found in the literature.

From the local analysis of U n
X we then construct a pair of algebras

A+(x) −→ R+(x) that parameterizes closed subschemes Z in X that
are generically étale and where the sections x1, . . . , xn form a basis for
the module OZ . The algebra A+(x) will give an open affine chart of
the space G n

X . That the new pair A+(x) −→ R+(x) has the desired
universal properties follows almost immediately from the usual prop-
erties of the Rees algebra, the existence of the Grothendieck–Deligne
norm map, and the explicit description of A (x) −→ R(x) discussed
above. In particular, we construct the space G n

X without reference to
the Hilbert scheme.

Due to the naturality of our construction it is not surprising that it
is possible to pass from the affine situation to the global situation with
algebraic spaces. However, the gluing of the canonical ideals involved
requires some work, which we do in detail at the end of the article.
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Using the local analysis described above, combined with patching ar-
guments, we obtain, for any separated algebraic space X −→ S, that
the principal component G n

X = U n
X is the blow-up of the n-fold sym-

metric product in a canonical closed subspace.

1. The alternator and symmetric tensors

In this section we will set up some notation and establish the identity
given in Proposition (1.7) that we will use in the next section.

1.1. Notation. Let R be an A-algebra. For each non-negative integer
n we let Tn

AR = R⊗A · · · ⊗A R denote the n-fold tensor product of R
over A. The A-algebra Tn

AR can be viewed as an R-algebra in several
different ways. For each p = 1, . . . , n, we let ϕp : R −→ Tn

AR denote
the co-projection on the pth factor.

The symmetric group Sn of n letters acts naturally on Tn
AR by

permuting the factors. We let TSn
AR := (Tn

AR)Sn denote the A-algebra
of invariants.

1.2. The alternator. For any n-tuple of elements x = x1, . . . , xn in
R we have the alternating tensor (called norm vector in [ES04])

α(x1, . . . , xn) =
∑

σ∈Sn

(−1)|σ|xσ(1) ⊗ · · · ⊗ xσ(n) in Tn
AR.

We will often write α(x) instead of α(x1, . . . , xn). Let X denote the
(n×n) matrix with coefficients Xp,q := ϕp(xq), where ϕp : R −→ Tn

AR
are the co-projections. Then we have the determinantal expression of
the alternating tensor as

α(x) = det(X) =
∑

σ∈Sn

(−1)|σ|ϕσ(1)(x1) · · ·ϕσ(n)(xn).

The alternator is the induced map of A-modules

(1.2.1) α : Tn
AR −→ Tn

AR.

Proposition 1.3. The alternator (1.2.1) is TSn
AR-linear.

Proof. Let x and y be elements of Tn
AR, with y a symmetric tensor.

We need to check that α(xy) = α(x) · y. As the map α is A-linear and
in particular respects sums, we may assume that x = x1 ⊗ · · · ⊗ xn.
Write y =

∑
γ yγ1 ⊗ · · · ⊗ yγn . We have

α(xy) =
∑

γ

α(x1yγ1 , . . . , xnyγn)

=
∑

γ

∑
σ∈Sn

(−1)|σ|xσ(1)yγσ(1)
⊗ · · · ⊗ xσ(n)yγσ(n)

=
∑

σ∈Sn

(−1)|σ|
(
xσ(1) ⊗ · · · ⊗ xσ(n)

)
·
( ∑

γ

yγσ(1)
⊗ · · · ⊗ yγσ(n)

)
.
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As y is symmetric we have that y =
∑

γ yγσ(1)
⊗ · · · ⊗ yγσ(n)

for any
permutation σ ∈ Sn. And consequently that the latter expression
obtained above, is α(x) · y. �

Remark 1.4. By the usual properties of the determinant we have that
the alternator (1.2.1) factors as a map of A-modules

∧n
AR −→ Tn

AR.

When two is not a zero divisor in R then ∧n
AR is in the natural way a

TSn
AR-module, hence we get an induced TSn

AR-linear map from the ex-
terior product (see also [LT07]). In general, however, the exterior prod-
uct ∧n

AR is not a TSn
AR-module (see [Lun08]). We thank D. Laksov

for drawing our attention towards these differences.

1.5. Alternators of different degrees. We will compare the alter-
nator maps of different degrees, and in the sequel we will let αn denote
the alternator map whose source is Tn

AR. We let the group Sn−1 act
on Tn

AR by permuting the first n− 1 factors, and let

TSn−1,1
A R = (Tn

AR)Sn−1

denote the invariant ring. It is furthermore convenient to introduce
the following notation αn−1,1 = αn−1 ⊗A idR. An immediate relation
between the alternators of different degrees is

(1.5.1) α(x) =
n∑

j=1

(−1)|τj,n|αn−1,1(τj,n(x)),

where τj,n ∈ Sn is the transposition of the factors j and n.

Lemma 1.6. The map αn−1,1 : Tn
AR −→ Tn

AR is TSn−1,1
A R-linear.

Proof. Reasoning as in the proof of Proposition (1.3) the result follows.
�

Proposition 1.7. Let x = x1, . . . , xn be an n-tuple of elements in an
A-algebra R. For each integer i = 1, . . . , n we let

x[i] = x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xn ⊗ 1 in Tn
AR

denote the n-tensor we get by removing the ith factor and inserting 1
on the last factor. We have, for any y ∈ TSn−1,1

A R, the identity

α(x)y =
n∑

i=1

(−1)n−iα
(
x[i]y

)
ϕn(xi) in Tn

AR.

Proof. Using the identity (1.5.1) we get that

α(x[i]y) =
n∑

j=1

(−1)|τj,n|αn−1,1(τj,n(x[i]y)).
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The element ϕn(xi) = 1⊗ · · ·⊗ 1⊗xi is Sn−1-invariant. And as αn−1,1

is TSn−1,1
A R-linear we have that the sum appearing in the proposition

is the sum of

(1.7.1)
n∑

i=1

(−1)n−iαn−1,1

(
x[i]ϕn(xi)y

)
and

(1.7.2)
n∑

i=1

n−1∑
j=1

(−1)n−i+1αn−1,1

(
τj,n(x[i]y)ϕn(xi)

)
.

In the first sum (1.7.1) we can take out the Sn−1-invariant element y
by the TSn−1,1

A R-linearity of αn−1,1. It is readily checked that

n∑
i=1

(−1)n−iαn−1,1(x[i]ϕn(xi)) = α(x).

Thus (1.7.1) equals α(x)y and we need to check that the remaining
expression (1.7.2) is zero. The summation in (1.7.2) runs over the set
of pairs (i, j) with i = 1, . . . , n and j = 1, . . . , n − 1, which is the
disjoint sum of C> = {(i, j) | i > j} and C≤ = {(i, j) | i ≤ j}. For
fixed (i, j) ∈ C> we have the corresponding summand

(1.7.3) (−1)n−i+1αn−1,1(τj,n(x[i]y)ϕn(xi))

in (1.7.2). We claim that this summand is canceled by the correspond-
ing summand over (j, i − 1) ∈ C≤. Let σq

p ∈ Sn, for any integers
p ≤ q ≤ n, denote the cyclic, increasing permutation of the factors
p, . . . , q. Since j < i we have

(1.7.4) τj,n(x[i]y)ϕn(xi) = σi−1
j

(
τi−1,n(x[j])ϕn(xj)

)
τj,n(y).

Moreover, σi−1
j ◦ τi−1,n = τj,n ◦ σi−1

j , and as σi−1
j (y) = y we can write

(1.7.4) as σi−1
j

(
τi−1,n(x[j]y)ϕn(xj)

)
. It then follows that (1.7.3) equals

(−1)n−i+1+|σi−1
j |αn−1,1(τi−1,n(x[j]y)ϕn(xj)).

As | σi−1
j |= i− 1− j we have that the summand (1.7.3) is canceled by

the corresponding summand over (j, i− 1) ∈ C≤. Consequently (1.7.2)
is zero and we have proven the proposition. �

1.8. Linear span. Let z =
∑n

i=1 aixi in R, with scalars a1, . . . , an

in A. Then, as the alternator α : Tn
AR −→ Tn

AR is multi-linear and
alternating, we have

(1.8.1) α(x1, . . . , xi−1, z, xi+1, . . . , xn) = ai · α(x) in Tn
AR.

In particular these identities hold for any z ∈ R if the elements x1, . . . , xn

form an A-module basis of R. However these identities always hold for-
mally in Tn

AR. Indeed, as a special case of our previous result we have
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Corollary 1.9. Let x = x1, . . . , xn be an n-tuple of elements in R. For
any z ∈ R we have the identity

α(x)ϕn(z) =
n∑

i=1

α(x1, . . . , xi−1, z, xi+1, . . . , xn)ϕn(xi)

in the tensor algebra Tn
AR.

Proof. Specializing the proposition with y = ϕn(z) ∈ TSn−1,1
A R gives

α(x)ϕn(z) =
n∑

i=1

(−1)n−iα(x[i]ϕn(z)) · ϕn(xi).

The result then follows since

(−1)n−iα(x[i]ϕn(z)) = α(x1, . . . , xi−1, z, xi+1, . . . , xn). �

Remark 1.10. There is a canonical map TSn−1
A R ⊗A R −→ TSn−1,1

A R
but this is not always an isomorphism in positive characteristic. In par-
ticular the inclusion TSn

AR −→ Tn
AR that factors through the inclusion

TSn−1,1
A R −→ Tn

AR, does not always factorize through TSn−1
A R⊗A R.

We thank T. Ekedahl for pointing this out and thereby correcting a
mistake in an earlier version of this article.

2. Linear solution spaces

Let x1, . . . , xn be a fixed n-tuple of elements in R. We will show how
to obtain an R-algebra R and an A-subalgebra A ⊆ R such that the
elements x1, . . . , xn in the R-algebra R form an A -module basis. The
universality of the constructed pair will be established in the section
following this one.

2.1. Localization of the square of an alternating tensor. Let x =
x1, . . . , xn be an n-tuple of elements in R, and let α(x) denote the tensor
described in 1.2. It is clear that a permutation σ ∈ Sn sends the tensor
α(x) ∈ Tn

AR to (−1)|σ|α(x). Consequently, if y = y1, . . . , yn is another
n-tuple of elements in R then α(x)α(y) is a symmetric tensor, that is
α(x)α(y) ∈ TSn

AR. In particular α2(x), the square of the alternating
tensor, is symmetric.

From Corollary (1.9) we see that the element α(x) has to be inverted
in order to express ϕn(z) in the form ϕn(z) =

∑n
i=1 aiϕn(xi) in Tn

AR.
We therefore introduce the notation

A = A (α2(x)) = TSn
AR[α2(x)−1]

for the localization of TSn
AR in the symmetric tensor α2(x).

Lemma 2.2. The elements ϕn(x1), . . . , ϕn(xn) in the localized ring
Tn

AR[α(x)−1] are linearly independent over A .
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Proof. An element
∑n

i=1 a
′
iϕn(xi) in Tn

AR[α(x)−1] with a′i ∈ A can be
written as α−2p(x)

∑n
i=1 aiϕn(xi), with ai ∈ TSn

AR, for some integer p.
Assume therefore that we have a relation

(2.2.1) a1ϕn(x1) + · · ·+ anϕn(xn) = 0

in Tn
AR, with symmetric tensors a1, . . . , an in TSn

AR. A permutation
σ ∈ Sn will transform the equation (2.2.1), to the identity

a1ϕσ(n)(x1) + · · ·+ anϕσ(n)(xn) = 0.

In particular we can replace ϕn in (2.2.1) with ϕj, for any j = 1, . . . , n.
We then obtain the matrix equation

X · A = 0,

where X is the (n × n)-matrix with coefficients Xp,q = ϕp(xq), and
A is the (n × 1)-matrix with coefficients a1, . . . , an. The coefficients
of the matrices are in Tn

AR. The determinant of the matrix X is
α(x1, . . . , xn), and it follows that the coefficients a1, . . . , an are all zero
in Tn

AR[α(x)−1]. �

2.3. The linear solution spaces. We have the inclusion of rings

(2.3.1) TSn
AR

i // TSn−1,1
A R

j // Tn
AR.

We have the n-tuple x = x1, . . . , xn fixed, and we localize the above
sequence of rings with respect to the symmetric tensor α2(x) ∈ TSn

AR.
We have earlier (2.1) introduced the notation A := TSn

AR[α2(x)−1],
and now we introduce

(2.3.2) R = R(α2(x)) = TSn−1,1
A R[α2(x)−1]

for the localization of TSn−1,1
A R with respect to the element α2(x) ∈

TSn
AR. The R-algebra structure on R is the one induced from the

co-projection map ϕn : R −→ Tn
AR on the last factor. We will also

denote the structure map with ϕn : R −→ R. Moreover, as the first
map i of (2.3.1) is injective, we have that A ⊆ R is a ring extension.

Theorem 2.4. Let x = x1, . . . , xn be an n-tuple of elements in an A-
algebra R, and define the ring extension A ⊆ R as in (2.3). Then we
have that the elements ϕn(x1), . . . , ϕn(xn) in the R-algebra R form an
A -module basis.

Proof. We obtain a map R −→ Tn
AR[α(x)−1] by localizing the canoni-

cal map j : TSn−1,1
A R −→ Tn

AR of (2.3.1). Linear independence follows

from Lemma (2.2). It remains to see that every tensor y ∈ TSn−1,1
A R is

in the A -linear span of the elements ϕn(x1), . . . , ϕn(xn). From Propo-
sition (1.7) we obtain the identity

α2(x)y =
n∑

i=1

(−1)n−iα(x)α(x[i]y)ϕn(xi).
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The product of two alternating tensors is a symmetric tensor, hence
when inverting α2(x) then y is in the A -linear span of ϕn(x1), . . . , ϕn(xn).

�

3. Universal properties of A −→ R

In this section we will show that the extension A ⊆ R constructed
in the previous section, has a universal property. We will show that
the pair represents the functor of pairs of étale extensions B −→ E,
where E is an R-algebra and where the images of x1, . . . , xn in E form
a B-module basis.

3.1. Trace map. Recall that the extension A ⊆ R we have con-
structed fits into the commutative diagram of A-algebras and A-algebra
homomorphisms

R // R⊗A A // R

A

OO

// A .

OO

The composition of the two upper horizontal morphisms in the diagram
above is ϕn : R −→ R. As R is free of rank n as an A -module, we
have the A -linear trace map R −→ A .

3.2. Discriminant. Let B −→ E be a homomorphism of rings, where
E is free of rank n as a B-module. To a given B-module basis e1, . . . , en

of E we define the discriminant dE ∈ B as the determinant of the
(n × n)-matrix whose coefficient ci,j is the trace of the B-linear map
z 7→ z · eiej. It is easily seen that the discriminant dE depends on
the choice of basis of E, however the ideal DE/B ⊆ B generated by
the discriminant does not. If B −→ E is locally free it is thus clear
that there is a locally principal ideal DE/B ⊆ B, locally given by the
discriminant.

Lemma 3.3. For any element z ∈ R we have that the trace of the
A -linear endomorphism e 7→ ϕn(z)e on R is ϕ1(z) + · · ·+ ϕn(z).

Proof. The elements ϕn(x1), . . . , ϕn(xn) form, by Theorem (2.4), an
A -module basis of R. The action of ϕn(z) on the fixed basis element
ϕn(xk) is ϕn(zxk). Using Corollary (1.9) we have that ϕn(zxk) is ex-
pressed as the sum

n∑
i=1

α(x1, . . . , xi−1, zxk, xi+1, . . . , xn)α(x)

α2(x)
ϕn(xi).
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In particular we see that α(x1, . . . , xk−1, zxk, xk+1, . . . , xn)α(x)−1 is the
kth component of ϕn(zxk), and consequently that the trace of the en-
domorphism e 7→ ϕn(z)e is

(3.3.1)
n∑

k=1

α(x1, . . . , xk−1, zxk, xk+1, . . . , xn)

α(x)
.

Now using the fact that the map α is TSn
AR-linear (1.3) we get that

α(x)
n∑

k=1

ϕk(z) =
n∑

k=1

α(x1, . . . , xk−1, zxk, xk+1, . . . , xn).

Applying that identity to the sum (3.3.1) proves the lemma. �

3.4. Polarized power sums. For any element z ∈ R the symmetric
tensor

p(z) := ϕ1(z) + · · ·+ ϕn(z) ∈ TSn
AR,

is often referred to as polarized power sum [Wey39]. We will need the
following observation.

Lemma 3.5. Let x = x1, . . . , xn and y = y1, . . . , yn be two n-tuples of
elements in R. Then we have that α(x)α(y) = det(p(xiyj)).

Proof. Let X be the (n × n)-matrix with coefficients Xp,q = ϕp(xq),
where ϕp : R −→ Tn

AR is the pth co-projection. Then α(x) = det(X).
If Y is the matrix with coefficients ϕp(yq) we get that

α(x)α(y) = det(XT · Y ),

where XT is the transpose of X. The coefficients of the product matrix
XTY are p(xpyq), proving the lemma. �

Proposition 3.6. The discriminant of the extension A −→ R is
α2(x). In particular we have that A −→ R is étale.

Proof. We have by Lemma (3.5) that α2(x) is the determinant of the
(n × n)-matrix whose coefficient (i, j) equals p(xixj). By definition
we have that p(xixj) = ϕ1(xixj) + · · · + ϕn(xixj), which by Lemma
(3.3) equals the trace of the endomorphism e 7→ ϕn(xixj) · e. As
ϕn(x1), . . . , ϕn(xn) is an A -module basis of R (Theorem 2.4), we have
that α2(x) is the discriminant of the extension A −→ R. It then
follows [EGAIV, 18.2] that the extension is étale. �

3.7. Algebra of polarized powers. We let P ⊆ TSn
AR be the A-

subalgebra generated by the polarized power sums;

P = A[p(z)]z∈R.

By Lemma (3.5) we have that α2(x) ∈ P .

Proposition 3.8. The inclusion of A-algebras P ⊆ TSn
AR becomes an

isomorphism after localization with respect to α2(x).
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Proof. Let x = x1 ⊗ · · · ⊗ xn. If y ∈ TSn
AR is a symmetric tensor we

have by Proposition (1.3)

α2(x) · y = α(x) · α(xy),

and therefore y = α(x)α(xy)/α2(x) in TSn
AR[α2(x)−1] = A . The

symmetric tensor y is a sum of tensors
∑

γ yγ, where each summand yγ

is of the form yγ1⊗· · ·⊗yγn . Consequently α(xy) is the sum
∑

γ α(xyγ).

From Lemma (3.5) it follows that α(x)α(xy) is a sum of products of
polarized powers. In other words, the symmetric tensor y ∈ P [α2(x)−1].

�

Remark 3.9. When the base ring A contains the field of rationals then
we have that the A-algebra of symmetric tensors TSn

AR is generated
by its polarized power sums (see [Wey39]). It is moreover known that
the polarized power sums do not always generate TSn

AR in positive
characteristic. We will later see (6.13) that the support of α2(x) in
Spec(TSn

AR), when running through all n-tuples x, is precisely the
diagonals. What our proposition above therefore says is that the po-
larized power sums always generate the ring of invariants — as long as
we stay away from the diagonals.

Proposition 3.10. Assume that the elements x1, . . . , xn in R form an
A-module basis. Then the discriminant dR ∈ A is mapped to α2(x)
by the structure map A −→ A . The induced map AdR

−→ A is an
isomorphism, and the A-algebra homomorphism ϕn : R ⊗A AdR

−→ R
is an isomorphism.

Proof. We note that the canonical A-algebra morphism A ⊗AR −→ R
is an isomorphism. Indeed, bijectivity follows as both A -modules have
the same basis: The elements 1⊗ x1, . . . , 1⊗ xn is a basis of A ⊗A R
by assumption, and these elements are mapped to ϕn(x1), . . . , ϕn(xn)
which form a basis of R by Theorem (2.4). In particular we have, for
any z ∈ R, the following identity of traces:

(3.10.1) TrA(e 7→ ze)⊗ 1 = TrA (e 7→ ϕn(z)e).

By Lemma (3.3) we then have that p(z) = TrA(e 7→ ze) ⊗ 1, and by
Proposition (3.6) we have that the discriminant dR ∈ A of the exten-
sion A −→ R is mapped to α2(x) ∈ A by the structure map A −→ A .
It now follows from (3.10.1) that the induced map AdR

−→ A is sur-
jective. Indeed, by Proposition (3.8) the A-algebra A is generated by
the polarized powers p(z) and the inverse of α2(x).

It remains to the see injectivity. As our morphism AdR
−→ A is the

localization of the map A −→ TSn
AR, it suffices to see that the map

A −→ Tn
AR is injective. Since the algebra R is a free A-module, it

follows that Tn
AR is free, hence A −→ Tn

AR is injective. �



THE PRINCIPAL COMPONENT OF THE HILBERT SCHEME 11

3.11. A commutative diagram. Let B −→ E be a homomorphism
of A-algebras. If f : R −→ E is an A-algebra homomorphism, we ob-
tain a natural A-algebra homomorphism of tensor products Tn

AR −→
Tn

B E, taking z1 ⊗ · · · ⊗ zn to f(z1) ⊗ · · · ⊗ f(zn). Consequently we
get induced A-algebra homomorphisms fn : TSn

AR −→ TSn
B E and

fn−1,1 : TSn−1,1
A R −→ TSn−1,1

B E such that the following diagram of
A-algebras

(3.11.1)

TSn
AR

fn //

��

TSn
B E

��

TSn−1,1
A R

fn−1,1 // TSn−1,1
B E

commutes.

Theorem 3.12. Let B −→ E be an étale extension of A-algebras,
and let f : R −→ E be an A-algebra homomorphism. Assume that the
elements f(x1), . . . , f(xn) form a B-module basis of E. Then there is
a unique A-algebra homomorphism

nE/B : A −→ B,

such that R ⊗A B = E as quotients of R ⊗A B. The homomorphism
nE/B is determined by sending the polarized power sum p(z) to TrB(e 7→
f(z)e), the trace of the multiplication map by f(z), for every z ∈ R.

Proof. We have the symmetric tensor α2(f(x1), . . . , f(xn)) = α2(f(x))
in TSn

B E. Let AE and RE denote the localization with respect to
α2(f(x)) in TSn

B E and of TSn−1,1
B E, respectively. The natural mor-

phism fn : TSn
AR −→ TSn

B E takes α2(x) to α2(f(x)). Then by localiz-
ing the commutative diagram (3.11.1) with respect to α2(x) we obtain
an A -algebra homomorphism

(3.12.1) R ⊗A AE −→ RE.

The morphism (3.12.1) takes the basis ϕn(x1)⊗ 1, . . . , ϕn(xn)⊗ 1 of
R ⊗A AE to the the elements ϕn(f(x1)), . . . , ϕn(f(xn)). By Theorem
(2.4) we have that ϕn(f(x1)), . . . , ϕn(f(xn)) form an AE-module ba-
sis of RE. Consequently the A -algebra homomorphism (3.12.1) is a
surjective map of free rank n AE-modules, hence an isomorphism.

By Proposition (3.10) we have a natural identification B = AE, and
E = RE, and consequently we have obtained an A-algebra homomor-
phism nE/B : A −→ B such that R ⊗A B = E.

It remains to see that the morphism nE/B is unique, and that it maps
each polarized power sum p(z) to the trace of the multiplication map
of f(z) on E. Note that since R ⊗A B = E we have the identity of
traces TrA (e 7→ ϕn(z)e)⊗ 1 = TrB(e 7→ f(z)e), for any element z ∈ R.
Combining that with Lemma (3.3) yield the identities

nE/B(p(z)) = TrA (e 7→ ϕn(z)e)⊗ 1 = TrB(e 7→ f(z)e).
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From this we conclude that the morphism nE/B : A −→ B has the
announced action on p(z), and since p(z) generates A (Proposition
3.8) the morphism is unique. �

3.13. The universal étale family, local description. For each n-
tuple of elements x = x1, . . . , xn in R we have the open immersion of
affine schemes Spec(A (α2(x)) ⊆ Spec(TSn

AR). Let x denote the set of
all n-tuples of elements in R, and consider the union

UR =
⋃
x∈x

Spec(A (α2(x)) ⊆ Spec(TSn
AR).

By construction we have a map ZR = ∪x∈x Spec(R(α2(x)) −→ UR.

Corollary 3.14. The family ZR −→ UR is étale of rank n, and the
natural map ZR −→ Spec(R)×Spec(A) UR is a closed immersion. Fur-
thermore, let B be an A-algebra, and let E be an algebra quotient of
R ⊗A B which is étale of rank n as a B-algebra. Then there exists a
unique morphism of schemes n : Spec(B) −→ UR such that the pull-
back n∗ZR = Spec(E) as closed subschemes of Spec(R⊗A B).

Proof. It is clear from the discussion in this section that the family
ZR −→ UR is a closed subscheme of Spec(R)×Spec(A) UR and étale of
rank n over UR. We will show its universal properties, and we begin
with uniqueness.

Assume that there are two morphisms n1, n2 : Spec(B) −→ UR such
that the two pull-backs n∗1ZR = n∗2ZR coincide with Spec(E). For any
n-tuple x of elements in R, write UR,x = Spec

(
A (α2(x))

)
. We define

the open subsets Tx,y = n−1
1 (UR,x

)
∩ n−1

2 (UR,y), for any two n-tuples
x, y ∈ x of elements in R. Then {Tx,y}x,y∈x is an open cover of Spec(B).
Moreover Tx,y is affine as UR,x is affine. We let Tx,y = Spec(Bx,y). The
images in Ex,y = E ⊗B Bx,y of either the elements x = x1, . . . , xn or
the elements y = y1, . . . , yn form a Bx,y-module basis.

Let nx : A (α2(x)) −→ Bx,y and ny : A (α2(y)) −→ Bx,y be the ho-
momorphisms corresponding to the morphisms of schemes n1|Tx,y and
n2|Tx,y . By Theorem (3.12) nx and ny send polarized power sums onto
traces. Thus, by Lemma (3.5), both nx and ny send α2(x) and α2(y)
onto a generator of the discriminant ideal DEx,y ⊆ Bx,y. By the
étaleness assumption of E we thus have that both nx and ny factor
through TSn

AR[α2(x)−1α2(y)−1]. By the uniqueness of nx and ny it
follows that these factorizations are equal. Thus n1 = n2.

Now, let B and E be as in the corollary. Then there is an affine open
covering {Spec(Bγ)}γ of Spec(B) such that for each index γ there are
n elements xγ = xγ1 , . . . , xγn in R whose images in Eγ = E⊗B Bγ form
a Bγ-module basis. By Theorem (3.12) we get, for each γ, a morphism

nγ : Spec(Bγ) −→ UR,xγ ⊆ UR
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such that the family ZR is pulled back to Spec(Eγ). The restrictions
of nγ and nγ′ to the intersection Spec(Bγ) ∩ Spec(Bγ′) coincide by the
uniqueness shown above. Thus the maps {nγ} glue to a morphism
n : Spec(B) −→ UR with the required property. �

4. Generically étale families

By some minor modifications of the results in the previous section we
will obtain a representing pair A+ −→ R+ for the functor of generically
étale families. We use the notation introduced in the preceding sections,
and in particular we have the n-tuple x = x1, . . . , xn of elements in R
fixed.

4.1. A canonical ideal. We have (Proposition 1.3) that the alternator
map α : Tn

AR −→ Tn
AR is TSn

AR-linear, and since Tn
AR has a product

structure we obtain a TSn
AR-module map

α× α : Tn
AR⊗TSn

A R Tn
AR −→ Tn

AR,

taking two elements y and z of Tn
AR to α(y)α(z). From (2.1) we

have that α(y)α(z) is invariant under the Sn-action. Consequently the
TSn

AR-module given as the image of α × α is an ideal of TSn
AR, and

this ideal we will denote by IR. We will refer to it as the canonical
ideal.

Remark 4.2. There is a natural homomorphism of rings from the di-
vided powers ring Γn

AR to the invariant ring TSn
AR. Under this map

the canonical ideal IR is the image of the norm ideal I ⊆ ΓnAR defined
in ([ES04]).

4.3. The subscheme defined by the canonical ideal. It is clear
from the definition of the canonical ideal IR ⊆ TSn

AR that it is gen-
erated by elements of the form α(y)α(z), with n-tuples y = y1, . . . , yn

and z = z1, . . . , zn of elements in R. Furthermore, if we let D(s) ⊆
Spec(TSn

AR) denote the open subset where s ∈ TSn
AR does not van-

ish, then we have

D(α(y)α(z)) = D(α2(y)) ∩D(α2(z)) in Spec(TSn
AR).

Let ∆ ⊆ Spec(TSn
AR) denote the closed subscheme defined by IR. We

then have, using the notation of the preceding section, that

(4.3.1) UR =
⋃
x∈x

Spec(A (α2(x))) = Spec(TSn
AR) \∆,

where x is the set of all n-tuples of elements in R. Let

ψ : Spec(TSn−1,1
A R) −→ Spec(TSn

AR)

denote the morphism corresponding to the canonical ring homomor-
phism i : TSn

AR −→ TSn−1,1
A R (2.3.1). We then have, with the nota-

tion of Corollary (3.14), that the family ZR = ψ−1(UR).
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4.4. The Rees algebras. The Rees algebra ⊕m≥0I
m
R of the canonical

ideal IR ⊆ TSn
AR is a graded ring, and we let

A+ = A+(α2(x)) =
(
⊕m≥0 I

m
R

)
(α2(x))

denote the degree zero part of the localization at the degree one element
α2(x) ∈ IR of the Rees algebra ⊕m≥0I

m
R . The natural inclusion of rings

TSn
AR −→ TSn−1,1

A R (2.3.1) induces a graded ring homomorphism
between their Rees algebras, and then an induced ring homomorphism

(4.4.1) A+
// R+ :=

(
⊕m≥0 I

m
R TSn−1,1

A R
)
(α2(x))

.

The A-algebra homomorphism ϕn : R −→ TSn−1,1
A R gives an R-algebra

structure on R+.

Proposition 4.5. The A+-algebra R+ is free as an A+-module, and
the elements ϕn(x1), . . . , ϕn(xn) form a basis. In particular we have
that the A-algebra homomorphism R⊗A A+ −→ R+ is surjective. Fur-
thermore, the discriminant of the extension A+ −→ R+ is a non-zero
divisor in A+.

Proof. Linear independence of ϕn(x1), . . . , ϕn(xn) follows from Theo-
rem (2.4) as the localization of A+ in the element α2(x) ∈ TSn

AR is
injective, and we have (A+)α2(x) = A . From Proposition (1.7) elements

of the form y ∈ TSn−1,1
A R are in the linear span of ϕn(x1), . . . , ϕn(xn),

and consequently they form a basis.
It remains to see that the discriminant of the extension A+ −→ R+ is

a non-zero divisor. As the localization map A+ −→ A is injective, and
R+⊗A+ A = R, we need only to see that the discriminant of A −→ R
is a non-zero divisor in A+. By Proposition (3.6) the discriminant is
α2(x), which by definition is a unit in A . �

4.6. The Grothendieck–Deligne norm map. Let B −→ E be an
extension of rings, where E is free of rank n as a B-module. The
norm induced by the determinant map det : E −→ B corresponds to
a B-algebra homomorphism σE : TSn

B E −→ B ([Rob80], [Del73, 6.3,
p. 180], and [Ive70]). The algebra homomorphism σE takes y⊗ · · · ⊗ y
to det(e 7→ ye).

Lemma 4.7. Let B −→ E be an extension of A-algebras, and let
f : R −→ E be an A-algebra homomorphism. Assume that the elements
f(x) = f(x1), . . . , f(xn) form a B-module basis of E, and let dE ∈ B
denote the discriminant of the the extension.

(i) The extension of the canonical ideal IR by the induced map
TSn

AR −→ TSn
B E coincides with the canonical ideal IE and

the ideal generated by α2(f(x1), . . . , f(xn)).
(ii) The element α2(f(x)) in TSn

B E is mapped to the discriminant
dE by the homomorphism σE : TSn

B E −→ B.
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(iii) We have the following commutative diagram of A-algebras and
A-algebra homomorphisms

(4.7.1)

TSn
AR

can //

can

��

TSn
B E

σE // B

can

��
A

nE/B // BdE
,

where nE/B is the morphism of Theorem (3.12).

Proof. As f(x1), . . . , f(xn) is aB-module basis of E it follows from (1.8)
that any alternating tensor α(z1, . . . , zn) is in the B-module spanned
by α(f(x)). In particular we see that IR TSn

B E = IE = (α2(f(x))),
and the first statement of the lemma follows.

Let z be an element of the free B-module E. We have (cf. [Ive70]
p. 9, Section 2.5) that the homomorphism σE sends the polarized power
sum p(z) to the trace of the multiplication map e 7→ ze. Thus, the
map σE and nE/B have the same action on polarized powers. Further-
more, as α2(f(x)) = det(p(f(xixj))) by Lemma (3.5) and we have that
f(x1), . . . , f(xn) form a B-module basis of E it follows that α2(f(x)) is
mapped to the discriminant dE of B −→ E. We have then proved the
second statement of the lemma. We have also that the localization of
the composite map σE ◦can: TSn

AR −→ B with respect to the element
α2(x) is the morphism nE/B, proving the third statement. �

4.8. Induced map of Rees algebras. Let B −→ E be an extension
as in Lemma (4.7). From the A-algebra homomorphism TSn

AR −→ B
appearing as the top horizontal row in (4.7.1), we obtain a graded
homomorphism of Rees algebras

(4.8.1) ⊕m≥0I
m
R −→ ⊕m≥0I

m
RB = ⊕m≥0(dE)m.

We have furthermore by Lemma (4.7) that α2(x) in TSn
AR is mapped

to the discriminant dE by the map (4.8.1). If we let B+ denote the
degree zero part of the localization of ⊕m≥0I

m
RB with respect to the

degree one element dE, we obtain from (4.8.1) an induced A-algebra
homomorphism

(4.8.2) n+
E/B : A+ −→ B+.

Let E+ := E ⊗B B+.
We will in the sequel use the notation Ker(dE) ⊆ B for the kernel of

the localization map B −→ BdE
. With this notation we have

(4.8.3) B+ = B/Ker(dE),

as IRB = (dE).
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Lemma 4.9. Let A −→ R be a homomorphism of rings, and assume
that x1, . . . , xn form an A-module basis for R. Then the induced A-
algebra homomorphism n+

R/A : A+ −→ A+ (4.8.2) is an isomorphism,

and the induced map R+ −→ R+ is an isomorphism.

Proof. We have that A+ = A/Ker(dR), where dR is the discriminant of
A −→ R. Since n+

R/A : A+ −→ A+ is an A-algebra homomorphism it is

necessarily surjective. Injectivity we prove in the following way. From
Lemma (4.7) we have the following commutative diagram of A-algebras

(4.9.1)

A+

��

n+
R/A // A+

��
A

nR/A // AdR
.

The vertical arrows are injective being the localizations in their respec-
tive discriminants, and the bottom horizontal map nR/A is an isomor-
phism by Proposition (3.10). Injectivity of n+

R/A now follows from the

commutative diagram (4.9.1).
As R+ is both an A+-algebra and an R-algebra we have an induced

A-algebra homomorphism

(4.9.2) R⊗A A+ −→ R+.

The map (4.9.2) sends the A+-module basis x1 ⊗ 1, . . . , xn ⊗ 1 to
ϕn(x1), . . . , ϕn(xn). By Proposition (4.5) it follows that the map (4.9.2)
is an isomorphism of A+-modules, hence an isomorphism of algebras.
As R+ is by definition R⊗AA+, and we have A+ = A+ we obtain from
(4.9.2) the isomorphism R+ −→ R+. �

Theorem 4.10. Let A −→ R be a homomorphism of algebras, and
let x1, . . . , xn be elements of R. Let B −→ E be an extension of A-
algebras, and assume that f : R −→ E is an A-algebra homomorphism
such that the elements f(x1), . . . , f(xn) form a B-module basis of E.
Then the A-algebra homomorphism n+

E/B : A+ −→ B+ (4.8.2) is the

unique A-algebra homomorphism such that

R+ ⊗A+ B+ = E+

as quotients of R⊗A B+.

Proof. From the canonical map TSn
AR −→ TSn

B E we obtain an in-
duced A-algebra homomorphism of graded rings

⊕m≥0I
m
R −→ ⊕m≥0I

m
R TSn

B E.

By Lemma (4.7) (i) we have that the extension IR TSn
B E is the canon-

ical ideal IE. We let (AE)+ denote the degree zero part of the local-
ization of the graded ring ⊕m≥0I

m
R TSn

B E = ⊕m≥0I
m
E at the degree one

element α2(f(x)). And similarly we let (RE)+ denote the localization of
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the graded ring we obtain from the natural map TSn
B E −→ TSn−1,1

B E.
From the commutative diagram of A-algebras in (3.11.1) we obtain the
following commutative diagram

(4.10.1)

A+

��

// (AE)+

��
R+

// (RE)+.

Since (AE)+ is the localization of the Rees algebra of the canonical
ideal IE ⊆ TSn

B E we have by Proposition (4.5) that the elements
ϕn(f(x1)), . . . , ϕn(f(xn)) form an (AE)+-module basis for the algebra
(RE)+. The commutative diagram (4.10.1) induces a canonical A+-
algebra homomorphism

(4.10.2) R+ ⊗A+ (AE)+ −→ (RE)+.

The A+-algebra homomorphism (4.10.2) sends ϕn(z)⊗ 1 to ϕn(f(z)).
Hence the homomorphism (4.10.2) identifies the (AE)+-module ba-
sis ϕn(x1)⊗ 1, . . . , ϕn(xn)⊗ 1 with the basis ϕn(f(x1)), . . . , ϕn(f(xn)),
and consequently (4.10.2) is an isomorphism of A+-algebras. Further-
more, by Lemma (4.9) we have a natural identification (AE)+ = B+

and (RE)+ = E+. Hence we have shown the existence of a morphism
A+ −→ B+ with the desired property.

For uniqueness we note that a morphism η : A+ −→ B+ such that
R+ ⊗A+ B+ = E+ would have to map the discriminant d+ of A+ −→
R+ to the discriminant dE of B −→ E. When we localize A+ in
the discriminant d+ we obtain A , and consequently a commutative
diagram of A-algebras

(4.10.3)

A+
η //

can

��

B+

can

��
A // BdE

.

As BdE
−→ EdE

is étale it follows from Theorem (3.12) that the
bottom horizontal row of the above (4.10.3) diagram is nEd/Bd

. Con-
sequently the morphisms η and n+

E/B coincide after localization with

respect to the discriminant d+. As the vertical arrows in the diagram
above are injective, both discriminants being non-zero divisors, it fol-
lows that η = n+

E/B. �

4.11. Generically étale families. Let B −→ E be a finite and lo-
cally free homomorphism of rings. If the local generators of the discrim-
inant ideal DE/B are non-zero divisors then we say that the extension
B −→ E is generically étale. Equivalently, the family is generically
étale if the closed subscheme of Spec(B), corresponding to the ideal
DE/B, is an effective Cartier divisor. Another, perhaps more geometric,
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characterization is the following. The finite and locally free extension
B −→ E is generically étale if and only if the open subset U ⊆ Spec(B)
of points where the fibers are étale is schematically dense in Spec(B).

4.12. The universal generically étale family, local description.
In analogy with the end of Section 3 we give here a local treatment for
the universal properties of the space of generically étale families. Let
x denote the set of all n-tuples of elements x1, . . . , xn in R. We let

U +
R =

⋃
x∈x

Spec(A+(α2(x))) ⊆ Proj(⊕m≥0I
m
R ).

Using identities similar to those in (4.3) one sees that the open subset
U +

R equals the scheme Proj(⊕m≥0I
m
R ). We note furthermore, that the

family Z +
R = ∪x∈x Spec(R+(α2(x))) −→ U +

R is generically étale, and
is a closed subscheme of Spec(R)×Spec(A) U +

R .

Corollary 4.13. Let B be an A-algebra, and let E be an algebra quo-
tient of R ⊗A B. Assume that the homomorphism of rings B −→ E
is a generically étale extension of rank n. Then there exist a unique
morphism of schemes

n+ : Spec(B) −→ U +
R ,

such that the pull-back of Z +
R along n+ is Spec(E).

Proof. The existence and uniqueness of the homomorphism n+ follows
by Theorem (4.10) and arguments similar to those in the proof of Corol-
lary (3.14). �

5. The space of étale families

In this section we show how to construct a space parameterizing étale
families in a fixed separated algebraic space X −→ S ([LMB00, 6.6]).
We thereby obtain an abstract and global version of Corollary (3.14),
but not the explicit statement about the basis as in Theorem (3.12).

5.1. Disjoint sections. Let f : X −→ S be a morphism of algebraic
spaces. A section of f is a morphism s : S −→ X such that f ◦ s = idS.
Two sections s, s′ : S −→ X are called disjoint if (s, s′) : S −→ X×S X
does not intersect the diagonal.

Remark 5.2. For a separated morphism X −→ S we have that a sec-
tion s : S −→ X is equivalent with a closed subspace Z ⊆ X, with Z
isomorphic to S. Note that two disjoint sections s, s′ : S −→ X de-
termines a closed subspace Z isomorphic to the disjoint union of two
copies of S.

For any S-space T we let Un
X(T ) denote the set of unordered n-tuples

of sections s1, . . . , sn of the second projection X ×S T −→ T , where
the sections are pairwise disjoint. Clearly Un

X describes a functor; the
functor of n unordered disjoint sections of X −→ S.
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5.3. Diagonals and their complement. Let X −→ S be separated,
and let Xn

S := X ×S · · · ×S X denote the n-fold product. We let VX

denote the open complement of the diagonals in Xn
S .

5.4. Action of the symmetric group. The permutation action Sn

on Xn
S induces an action ρ : VX ×Sn −→ VX . It is clear that the map

(π1, ρ) : VX×Sn −→ VX×S VX is a monomorphism of algebraic spaces,
where π1 denotes the projection on the first factor. We say that the
action ρ is free, and we note that (π1, ρ) describes an étale equivalence
relation on VX .

Lemma 5.5. Let X −→ S be a separated algebraic space. Then Un
X is

the presheaf quotient of the equivalence relation VX ×Sn

π1 //
ρ

//VX .

Proof. Clearly Xn
S parameterizes n ordered sections as we have the

canonical identification

HomS(T,Xn
S ) =

n∏
i=1

HomT (T,X ×S T ),

for any S-space T . Similarly we get that VX parameterizes n ordered
disjoint sections of X −→ S. The action of Sn on VX corresponds
to the action on HomS(T,Xn

S ) given by permuting the sections, from
where it follows that the presheaf quotient is Un

X . �

5.6. The space of étale families. We let U n
X denote the sheafifica-

tion of the presheaf Un
X in the étale topology. As a consequence of the

above lemma we have that the sheaf U n
X is the quotient sheaf of the

equivalence relation VX ×Sn

π1 //
ρ

//VX .

Proposition 5.7. Let X −→ S be a separated algebraic space. The
sheaf U n

X is an algebraic space and represents the functor of closed
subspaces of X that are étale and of rank n over the base.

Proof. As the algebraic space VX −→ S is separated, the map

(π1, ρ) : VX ×Sn −→ VX ×S VX

is a closed immersion and hence quasi-affine. We then have that the
quotient sheaf U n

X of the étale equivalence relation

VX ×Sn

π1 //
ρ

//VX

is an algebraic space [Knu71, II, Prop. 3.14].
What remains to show is that sections of U n

X corresponds to closed
subspaces that are étale of rank n over the base. By Lemma (5.5) a
section over an S-space T of the presheaf Un

X is n unordered disjoint
sections of X ×S T −→ T . Equivalently, as X −→ S is separated,
a section over T is a closed subspace Z ⊆ X ×S T such that Z is
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isomorphic to a disjoint union of n copies of T . Consequently, a section
over T of the sheaf U n

X is given by an étale covering T ′ −→ T and a
closed subspace Z ′ ⊆ X×ST

′, isomorphic to a disjoint union of n copies
of T ′. The pull-back of the family Z ′ −→ T ′ along the two different
projection maps T ′ ×T T

′ −→ T ′ coincide. Therefore we have that the
section over T of U n

X is given by a unique closed subspace Z ⊆ X×S T
such that Z −→ T is étale and finite of rank n.

Further, as every finite étale morphism Z −→ T trivializes after an
étale base change, the set of sections over T is the set of all closed
subspaces Z ⊆ X ×S T that are finite, étale and of rank n. �

Remark 5.8. Let Sn−1 act by permuting the first n− 1 factors of Xn
S ,

and consider the induced action on VX . The induced map VX/Sn−1 −→
U n

X will be étale of rank n, and one can check that this is in fact the
universal family of étale, rank n closed subspaces of X. In Proposition
(6.12) we will prove this fact using a different approach.

Remark 5.9. When X = Spec(R) is affine over base S = Spec(A)
then we have that U n

X is the open complement of the diagonals in
Spec(TSn

AR). One can furthermore check that the support of the closed
subscheme defined by the canonical ideal IR ⊆ TSn

AR is the diagonals.
Hence Corollary (3.14) can be obtained as a consequence of Proposition
(5.7). However, the more explicit description given by Theorem (3.12)
is what will be important for us.

6. The space of generically étale families

6.1. Finite group quotients. When a finite group G acts on a sep-
arated algebraic space X, the geometric quotient X/G exists as an al-
gebraic space; this is an unpublished result of Deligne [Knu71, p. 183].
When the base is locally Noetherian and X −→ S is locally of finite
type, proofs of this existence result are given in [KM97] and in [Kol97].
It is furthermore possible to extend the proof given by Kollár in [Kol97]
to the general setting with any separated algebraic space X −→ S, for
details we refer to [Ryd07].

We will be interested in the particular case with the symmetric group
Sn of n letters acting by permuting the factors of the n-fold product
Xn

S = X×S · · ·×S X. For a separated algebraic space X −→ S we will
denote the quotient space with Symn

SX.

6.2. Symmetric spaces. A well-known fact is that geometric quo-
tients commute with flat base change [MFK94, p. 9] or, for finite groups
[SGA1, Exp. V, Prop. 1.9]. Thus if T −→ S is flat, and XT denotes
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X ×S T , then we have the cartesian diagram

(6.2.1)

Symn
T (XT )

��

// Symn
SX

��
T // S.

This fact will be useful when we want to reduce to the case with an
affine base scheme S.

6.3. Fixed-point reflecting morphisms. We recall some properties
of geometric quotients (see [Knu71], [Ryd07]). Let G be a finite group
acting on an algebraic space Y . The stabilizer group Gy of a point
y ∈ Y is defined as the inverse image of the point (y, y) by the map
G×S Y −→ Y ×S Y . A G-equivariant morphism f : Y −→ X is fixed-
point reflecting in a point y ∈ Y if the stabilizer group Gy equals the
stabilizer group Gf(y). The fixed-point reflecting set, with respect to
a given étale separated map Y −→ X, we denote by Y |fpr. The set
Y |fpr ⊆ Y is an open G-invariant subset, and we denote the geometric
quotient Y |fpr/G by Y/G|fpr. We have furthermore a cartesian diagram

(6.3.1)

Y |fpr

��

// X

��
Y/G|fpr

// X/G,

where the horizontal maps are étale.

Proposition 6.4. Let X −→ S be a separated algebraic space, and let
Y −→ X be étale, with Y affine. Let T −→ S be an S-space, and let
Z ⊆ Y ×S T be a closed subspace, which is finite and locally free of rank
n over T . Let σZ : T −→ Symn

SY denote the morphism corresponding
to the determinant map (4.6). Then the morphism σZ : T −→ Symn

SY
factors through the fixed-point reflecting set Symn

SY |fpr if and only if the
composite morphism Z ⊆ Y ×S T −→ X ×S T is a closed immersion.

Proof. Since the morphism Z −→ T is finite we have that the morphism
i : Z −→ X ×S T is a closed immersion if and only if the induced
morphism over points is a closed immersion. Thus we can assume
T = Spec(K), where K is an algebraically closed field. The support of
the family Z is then a finite set of points z1, . . . , zp in Y ×S Spec(K).
Let mi denote the length of the local ring at zi, i = 1, . . . , p. The
determinant map T −→ Symn

TZ takes the family Z −→ T to the cycle
m1 ·z1+ · · ·+mp ·zp [Ive70, Prop. 4.7]. The determinant map composed
with the induced map Symn

TZ −→ Symn
SY is the morphism σZ . Let

z ∈ Y n
S be the n-tuple of points where the m1 first coordinates are

z1, the next m2 coordinates are z2 etc. The set of points in Y n
S that

we obtain by shuffling the order of the n-tuple z is the inverse image
q−1
n (σZ(T )) by the quotient map qn : Y n

S −→ Symn
SY .
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Since Z ⊆ Y ×S T is a closed immersion and Y −→ X an étale map,
the composition i : Z −→ X ×S T is a closed immersion if and only
if it is injective on points ([EGAIV, Prop. 17.2.6, Cor. 18.12.6]). The
map i being injective is equivalent with the set q−1

n (σZ(T )) ⊂ Y n ×S T
being a subset of the fixed-point reflecting set (Y n

S )|fpr with respect to
the map Y n

S −→ Xn
S . �

6.5. Covers of symmetric quotients with affine base. Let the
base space S be affine, and let X −→ S be a separated algebraic space.
We choose an étale covering

∐
Xγ −→ X, with Xγ affine for each γ,

such that the induced map

(6.5.1)
∐
γ

(Xγ)
n
S −→ Xn

S

is surjective. In other words, a covering such that any n-tuple of points
in X lies in the image of some Xγ −→ X. Then

∐
γ Symn

S(Xγ)|fpr −→
Symn

SX is an étale cover. For two indices γ and γ′ we define

(Xγ ×X Xγ′)
n|fpr := (Xγ)

n|fpr ×Xn
S

(Xγ′)
n|fpr,

where we have suppressed the base S in the notation, and where we
have used the notation introduced in (6.3). We have the following
commutative diagram
(6.5.2)∐

γ,γ′(Xγ ×X Xγ′)
n|fpr

q

��

p1 //
p2

//
∐

γ(Xγ)
n|fpr

q

��

p // Xn
S

q

��∐
γ,γ′ Symn

S(Xγ ×X Xγ′)|fpr

π1 //
π2

//
∐

γ Symn
S(Xγ)|fpr

π // Symn
SX,

where the q’s are the quotient maps, p1, p2 and p are the natural maps,
and where π1, π2 and π are the induced ones. By (6.3) we have that
the three squares: qp = πq and qpi = πiq for i = 1, 2; are cartesian.
Furthermore we have that π1 and π2 form an étale equivalence relation
with quotient π.

Lemma 6.6. Let A −→ A′ be a homomorphism of rings, R be an A-
algebra and R′ = R⊗AA

′. Then the extension of the canonical ideal IR
(4.1) by the homomorphism TSn

A(R) −→ TSn
A′(R′) equals the canonical

ideal IR′.

Proof. Recall the alternator map αR : Tn
AR −→ Tn

AR (1.2.1) and that
the canonical ideal IR is generated by α(x)α(y) for x, y ∈ Tn

AR. As
αR′ = αR ⊗ 1: Tn

A′ R′ −→ Tn
A′ R′ is A′-linear the lemma follows. �

Lemma 6.7. Let X ′ −→ X be an étale morphism of S-schemes where
S = Spec(A), X ′ = Spec(R′) and X = Spec(R) are affine schemes.
Let I and I ′ be the ideal sheaves corresponding to the canonical ideals
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of TSn
A(R) and TSn

A(R′) respectively. Then the pull-back of I by the
morphism

Symn
S(X ′)|fpr −→ Symn

S(X)

equals the restriction of I ′.

Proof. The canonical ideal IR of TSn
AR is the image of the TSn

AR-linear
map

(6.7.1) α× α : Tn
AR⊗TSn

A R Tn
AR −→ TSn

AR.

Let fγ ∈ TSn
A(R′) be symmetric tensors such that the principal open

sets D(fγ) cover Symn
S(X ′)|fpr. From (6.3.1) we have that the diagram

(Tn
AR

′)fγ Tn
ARoo

(TSn
AR

′)fγ

OO

TSn
ARoo

OO

is co-cartesian for every γ. Therefore, by applying the change of basis
TSn

AR −→ (TSn
AR

′)fγ to the morphism (6.7.1) we obtain

α× α : (Tn
AR

′)fγ ⊗(TSn
A R′)fγ

(Tn
AR

′)fγ −→ (TSn
AR

′)fγ .

Thus the extension of the canonical ideal IR in (TSn
AR

′)fγ equals the
localization of the canonical ideal IR′ in fγ. �

Proposition 6.8. Let X −→ S be a separated algebraic space. The
canonical ideals IR ⊆ TSn

AR as defined in Section (4.1) for A-algebras
R, glue to an ideal sheaf IX on Symn

S(X). If Y −→ X is an étale
morphism then the pull-back of IX along Symn

S(Y )|fpr −→ Symn
S(X)

is the restriction of the canonical ideal sheaf IY on Symn
S(Y ).

Proof. Let
∐

β Sβ −→ S be an étale cover with Sβ affine and let

Xβ = X ×S Sβ. For any β choose an étale cover
∐

γ Xβ,γ −→ Xβ

as in (6.5.1). Then the canonical ideal sheaves on SymSβ
(Xβ,γ) glue

to an ideal sheaf IXβ
on SymSβ

(Xβ) using Lemma (6.7) and the étale

equivalence relation of (6.5.2). It is further clear that IXβ
is indepen-

dent on the choice of étale cover of Xβ.
Using that symmetric products commute with flat base change (6.2.1)

and Lemma (6.6) it follows that the sheaves IXβ
glue to an ideal sheaf

IX on Symn
S(X) which is independent on the choice of covering of S.

The last statement is obvious from the construction. �

6.9. The addition of points map. Let qn : Xn
S −→ Symn

SX be the
quotient map. We let Sn−1 act on the first n−1 copies ofXn

S and denote
the geometric quotient Xn

S/Sn−1 with Symn−1,1
S X. Since the geometric

quotient equals the categorical quotient in the category of separated al-
gebraic spaces ([Kol97, Cor. 2.15], [Ryd07]), and as qn is Sn−1-invariant
it factors through Xn

S −→ Symn−1,1
S X. We have a canonical morphism

(6.9.1) ψX : Symn−1,1
S X −→ Symn

SX.
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Lemma 6.10. Let Y −→ X be an étale map. Then the pull-back of
the family ψX along the morphism Symn

SY |fpr −→ Symn
SX is canoni-

cally identified with the restriction of the family ψY to the open subset
Symn

SY |fpr ⊆ Symn
SY .

Proof. Let U = (Y n
S )|fpr denote the Sn-invariant fixed-point reflecting

set of Y n
S −→ Xn

S . We then have that the induced map U/Sn−1 −→
U/Sn is the restriction of ψY : Y n/Sn−1 −→ Y n/Sn to the open subset
U/Sn = Symn

S(Y )|fpr ⊆ Symn
SY . We need to see that the pull-back

of the family ψX : Xn/Sn−1 −→ Xn/Sn along the map U/Sn −→
Xn/Sn equals U/Sn−1 −→ U/Sn. First note that U is the base change
of Xn by the étale morphism U/Sn −→ Xn/Sn as the diagram (6.3.1)
is cartesian. As taking the quotient with Sn−1 commutes with flat base
change (6.2) the result follows. �

Lemma 6.11. Let Z −→ S be a finite map of algebraic spaces, and let
W −→ Z be an étale cover. Then there exists an étale cover S ′ −→ S
such that W×SS

′ −→ Z×SS
′ has a section. In particular, suppose that

Z ⊆ X is a closed immersion of algebraic spaces, with Z finite over the
base. Then, for a separated and étale cover Y −→ X there exists an
étale cover S ′ −→ S such that the closed immersion Z×SS

′ −→ X×SS
′

lifts to a closed immersion Z ×S S
′ −→ Y ×S S

′.

Proof. Let x ∈ S be a point, and let Ah
x denote the strictly local ring at

x. Let Ex be the coordinate ring of the affine scheme Z ×S Spec(Ah
x).

Then Ex is a product of local Henselian rings with separably closed
residue fields. For every closed point zi of Spec(Ex) choose a point wi

of W ×S Spec(Ah
x) above zi. As W −→ Z is étale there is a section

Z ×S Spec(Ah
x)) −→ W ×S Spec(Ah

x) mapping zi to wi. By a standard
limit argument, this section extends to a section Z ×S U −→ W ×S U
where U is an étale neighborhood around the point x ∈ S, proving the
first claim. �

Proposition 6.12. Let X −→ S be a separated algebraic space. Let
∆ ⊆ Symn

SX denote the closed subspace defined by the canonical ideal
sheaf IX . We have a canonical identification U n

X = Symn
SX \∆, where

U n
X is the algebraic space of (5.6). Moreover, the family ψ−1

X (U n
X ) −→

U n
X is the universal family of closed subspaces in X −→ S, that are

étale of rank n over the base.

Proof. Denote the open subspace U = Symn
SX\∆, and let Z = ψ−1

X (U).
By Proposition (5.7) it suffices to show that the pair (U,Z) represents
the functor parameterizing closed subspaces of X that are étale of rank
n over the base.

We can by (6.2) assume that the base S = Spec(A) is affine, and
we let

∐
γ Xγ −→ X be an étale covering as given in the construction

(6.5.1). Let Uγ denote the inverse image of U along Symn
S(Xγ)|fpr −→

Symn
SX. Let Zγ be the pull-back of the family Z −→ U to Uγ and define
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Uγ,γ′ and Zγ,γ′ in a similar way. We then have a cartesian diagram of
étale equivalence relations

(6.12.1)

∐
γ,γ′ Zγ,γ′

��

p1 //
p2

//
∐

γ Zγ

��

p // Z

��∐
γ,γ′ Uγ,γ′

π1 //
π2

//
∐

γ Uγ
π // U.

By Proposition (6.8) we have that Uγ = Symn
S(Xγ)|fpr∩D(IXγ ), where

D(IXγ ) is the open subset of Symn
S(Xγ) defined by the non-vanishing of

the ideal sheaf IXγ . By Lemma (6.10) the family Zγ −→ Uγ is simply
the restriction of the family ψXγ to Uγ. Now it follows from Corollary
(3.14) and Proposition (6.4) that (Uγ, Zγ) parameterizes closed sub-
spaces W ⊆ Xγ that are étale of rank n over the base, and which are
also closed subspaces of X. In particular, we have that Z −→ U is
étale of rank n. The universal properties of (U,Z) then follows from
Lemma (6.11) and the above diagram. �

Remark 6.13. It follows from the proposition that the support |∆| of the
space defined by the canonical sheaf of ideals IX , equals the diagonals.
This can also be verified directly.

6.14. The space of generically étale families. We let G n
X denote

the blow-up of Symn
SX along the closed subspace ∆ ⊆ Symn

SX defined
by canonical ideal IX . We furthermore let Z denote the blow-up of
Symn−1,1

S (X) along ψ−1
X ∆, where ψX is the canonical morphism (6.9.1).

The morphism ψX then induces a morphism

(6.14.1) ZX −→ G n
X .

Remark 6.15. The property of being generically étale is not stable un-
der base change, as one easily realizes by taking the fiber of a point
in the discriminant locus of the family. However the property of be-
ing generically étale is stable under flat base change, and in particular
under étale base change.

Theorem 6.16. Let X −→ S be a separated algebraic space, and let
ZX −→ G n

X be as in (6.14.1). Then the family ZX −→ G n
X is gener-

ically étale of rank n, and has the following universal property. For
any S-space T , and any closed subspace Z ⊆ X ×S T such that the
projection Z −→ T is generically étale of rank n, there exists a unique
morphism f : T −→ G n

X such that the pull-back f ∗ZX = Z, as subspaces
of X ×S T .

Proof. Proceeding as in the proof of Proposition (6.12), replacing Z −→
U with ZX −→ G n

X , we obtain a cartesian diagram similar to (6.12.1).
In this diagram, the vertical arrows are the blow-ups of the canonical
morphisms ψXγ and ψXγ,γ′

, in the corresponding canonical ideals, re-
stricted to the fixed-point reflecting loci. This is because blowing up
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commutes with flat base change. Arguing as in the proof of Proposi-
tion (6.12), it then follows that ZX −→ G n

X is generically étale and has
the ascribed universal property by (4.12), Corollary (4.13), Proposition
(6.4) and Lemma (6.11). �

6.17. Schematic closure. Let f : Y −→ X be a quasi-compact im-
mersion of algebraic spaces. Then f∗OY is quasi-coherent, and in par-
ticular the kernel of OX −→ f∗OY is a quasi-coherent sheaf of ideals
in OX [Knu71, II, Prop. 4.6]. The closed subspace in X determined by
this ideal sheaf is the schematic closure of f : Y −→ X.

Corollary 6.18. Let H n
X denote the Hilbert functor of flat, finite rank

n families of closed subspaces in X −→ S. Then U n
X is an open sub-

space of H n
X , and G n

X equals the schematic closure of U n
X in H n

X .

Proof. As X −→ S is separated the Hilbert functor is representable
by an algebraic space (see e.g. [Ryd10], [ES04]). It is clear that U n

X is
open in H n

X being the complement of the discriminant of the universal
family. As the discriminant is a locally principal subspace we have
that the open immersion U n

X ⊆ H n
X is quasi-compact. Let G ⊆ H n

X

denote the schematic closure of U n
X . It is clear that the restriction of

the universal family ξ −→ H n
X to G satisfies the universal property for

generically étale families. Consequently, by the theorem we have that
G n

X = G. �

Remark 6.19. Let R be an A-algebra. There is a canonical A-algebra
homomorphism τ : Γn

A(R) −→ TSn
AR from the divided powers algebra

to the ring of symmetric tensors. The map τ is in general neither
surjective nor injective [Lun08].

The situation can be globalized (see [Ryd08]) for a separated alge-
braic space X −→ S, giving a map t : Symn

SX −→ Γn
X/S. In ([ES04])

they defined a closed subspace ∆′ ⊆ Γn
X/S whose blow-up yields the

good component of the Hilbert functor H n
X . The closed subspace

∆ ⊆ Symn
SX that we consider in this article is the inverse image

t−1(∆′). Even though the map t : Symn
SX −→ Γn

X/S is not an isomor-

phism we have that the two corresponding blow-ups of ∆′ and t−1(∆′)
are isomorphic; indeed both blow-ups are identified with the schematic
closure of U n

X inside the Hilbert space H n
X .

Remark 6.20. The universal family ZX we obtained by blowing up the
closed subspace ψ−1

X (∆) ⊆ Symn−1,1
S X, or equivalently by taking the

strict transform of ψX along G n
X −→ Symn

SX. There is however a natu-
ral way to make a finite family flat. Let B denote the blow up of Symn

SX
along the nth Fitting ideal of the family ψX : Symn−1,1

S X −→ Symn
SX.

Then the strict transform E −→ B of the family ψX is flat ([RG71,
5.4]). The Fitting ideal is in general different from the canonical ideal.
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