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Abstract— Identifying the parameters of a system possessing
a large dynamic range presents a number of difficulties for
a least squares type algorithm. Foremost, is that of obtaining
reliable parameter estimates from a poor or ill-conditioned least
squares formulation. In this paper we examine properties of
a technique that utilises frequency localising basis functions
to ensure that ill-conditioning is reduced when solving for
the parameter estimates. Specifically, we obtain a bound on
the condition number of the least squares problem which is
independent of the frequency range for a particular class of
models. We also present an example, utilising real data, which
demonstrates the potential of the technique when applied to
large dynamic range systems.

I. INTRODUCTION

In system identification one can perform parameter esti-
mation in either the time or frequency domain [5, 7, 14, 17,
11, 12]. Several advantages exist for the case of frequency
domain identification over that of identification in the time
domain [10, 15]. These advantages include: the ease of noise
reduction (only frequencies where excitation is provided are
used in the estimation procedure), data reduction (through
the use of a non-parametric model of the system in the
frequency domain), the ease of combining data from dif-
ferent experiments and model validation (periodic excitation
provides a good frequency response model at the excita-
tion frequencies). In fact, frequency domain identification
is usually preferred over that of the time domain for the
modelling of continuous time systems, particulary when the
excitation signal is periodic and a parametric model of a
plant or process is required.

A linear single-input-single-output (SISO) dynamic sys-
tem can be characterised by a transfer function involving
the ratio of two polynomials. Levy [9] proposed a technique
involving the use of a linear least squares (LS) estimation
algorithm, for use with experimentally obtained frequency
domain data, to estimate the coefficients of these polynomi-
als. It is well known that the normal matrix utilised in this
type of estimator is sensitive to the dynamics and bandwidth
of the system and can lead to ill-conditioning. This ill-
conditioning, of the LS normal matrix, has been well studied
[6]. The ramification of poor conditioning is that it typically
manifests itself as poor or erroneous estimates of the system
parameters.
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There has been a substantial amount of work undertaken
to improve the conditioning of the LS problem for a variety
of reasons in the system identification area. To overcome
a poor low frequency fit [16] proposed an iterative method
utilising a weighting obtained from the previous estimate.
To improve the numerical properties of the LS problem
[2] used frequency scaling and [1, 2] utilised orthogonal
polynomials, such as Tchebychev polynomials. Orthonor-
mal basis functions have been shown to provide perfect
conditioning for the LS problem under specific conditions
[19, 13], i.e. for a white input spectrum. It has also been
shown [13] that the orthonormal basis functions exhibit some
degree of robustness with respect to spectral colouring of
the input. However, as demonstrated in [20], there is still
significant ill-conditioning associated with all these methods
when considering systems with a large dynamic range and
more general inputs.

It should be noted that, in general, it is not good practice to
explicitly form and then invert the normal matrix to solve the
least squares problem. Several techniques exist which allow
one to find the LS estimate without inverting the normal
matrix [6, 7]. However, if the conditioning of the regressor
matrix is very poor, then these other methods still encounter
difficulties in obtaining a reliable solution.

Other recent work [4] has proposed an algorithm that uses
S-K iterations [16] and frequency scaling as well as orthogo-
nal polynomials as basis functions. Evidence provided in [4],
based on real experimental data, shows that the condition
number for the examples, is relatively low.

A technique proposed in [20], utilises particular basis
functions, which are aimed specifically at improving the
numerical properties of the LS problem in transfer function
estimation over a large dynamic range. A key point in
the approach taken in [20] is that the method restricts the
dynamic range over which each coefficient is estimated
by the use of, what is termed, ‘frequency localising basis
functions’ (FLBFs) which span a desired frequency region.
These functions allow the normal matrix to take on a near
block diagonal form and hence improve its conditioning. We
also note that this results in a reduction of the amount of
correlation in the normal matrix.

In contrast to orthonormal basis functions, FLBFs are not
exactly orthogonal for any standard input signal, however,
are ‘nearly orthogonal’ for a wide range of inputs. Thus an
exact property is traded for an approximate property with
the aim of achieving some degree of robustness. This line of



reasoning mirrors the usual trade-off that exists between per-
formance (under some nominal conditions) versus robustness
(under other conditions).

A further point to note, is that the filters utilised in the
frequency localising basis functions are essentially bandpass
filters and hence, relatively simple to implement.

Under some specific assumptions it was shown in [20] that
the achieved condition number of the LS problem, when the
frequency localising basis functions have been utilised, is
independent of the dynamic range. One of the assumptions
made is with respect to the model structure, i.e. it was
established for a Moving Average (MA) model. In this paper
we obtain a similar bound for an Output Error (OE) model
structure.

The structure of the paper is as follows. In Section II we
begin by formulating the problem and demonstrating how
the Frequency Localising Basis Functions are utilised in the
LS problem. Next we discuss our result which shows the
independence of the LS condition number (for a particular
case) when the estimator uses the proposed basis functions.
In Section IV we consider higher order Frequency Localising
Basis Functions, which can describe systems with sharper
resonances and can improve numerical conditioning when
the input frequencies are close to each other. Then, in Section
V we illustrate with an example, utilising real data, the
benefits obtained when employing these functions in the
estimation of a large dynamic range system. We present
conclusions in Section VI.

II. PROBLEM STATEMENT

In this section we outline the general problem and provide
a description of the frequency localising basis functions and
how they are applied to improve the properties of a LS
estimator.

Consider a single-input-single-output linear continuous
time system, with input {u(t)}t∈R and output {y(t)}t∈R,
defined by the strictly proper transfer function

G(s) :=
B(s)
A(s)

, (1)

where

A(s) := sn + an−1s
n−1 + · · ·+ a1s + a0

B(s) := bmsm + bm−1s
m−1 + · · ·+ b0 (2)

and n, m ∈ N (n > m).
Figure 1 shows the relationship between the input u, the

noise e (which is assumed to be zero mean Gaussian white
noise) and the output y of the system G(s).

Also consider the use of periodic excitation signals applied
to the input for the purpose of obtaining a frequency response
model of the system. Hence, we work in the frequency
domain. Specifically, to estimate a parametric model of
the system, let {u(t)}t∈R be a sum of sine waves of unit
amplitude and equal phase at frequencies ω1, . . . , ωN (N ∈
N) (i.e., U(jωk) = 1 for k = 1, . . . , N ), and consider a

e

G(s)u y

Fig. 1. Block diagram describing the relationship between the input u, the
noise e and the output y of the system to be identified.

model given by the transfer function

Ĝ(s) :=
B̂(s)
Â(s)

. (3)

Here, Â and B̂ are polynomials which minimise the cost
function

J :=
N∑

k=1

∣∣∣∣∣ Â(jωk)
E(jωk)

Y (jωk)− B̂(jωk)
E(jωk)

U(jωk)

∣∣∣∣∣
2

(4)

where

Â(s)
E(s)

= 1 +
ñ∑

k=1

αkF2k−1(s)

B̂(s)
E(s)

=
ñ∑

k=1

βkF2k(s) (5)

and α1, . . . , αñ, β1, . . . , βñ ∈ C (ñ ∈ N). The monic
polynomial E(s) is defined as the denominator of the right
side of (5). The functions Fk, are those we term Frequency
Localising Basis Functions [20], and are of the form

Fk(s) := sk−1pk

k∏
i=1

1
s + pi

; k = 1, . . . , 2ñ, (6)

where 0 < p1 < · · · < p2ñ < ∞.
To obtain the values of α1, . . . , αñ, β1, . . . , βñ, we can

rewrite the problem of minimising J as a LS problem:

θ̂ = (XHX)−1XHY (7)

where

θ̂ := [ α1 β1 · · · αñ βñ ]T ∈ C2ñ×1

X :=

 Y 1
1 U1

1 · · · Y ñ
1 U ñ

1
...

...
...

...
Y 1

N U1
N · · · Y ñ

N U ñ
N

 ∈ CN×2ñ

Y :=
[

Y (jω1) · · · Y (jωN )
]T ∈ CN×1 (8)

Y i
k := −F2i−1(jωk)Y (jωk)

U i
k := F2i(jωk)U(jωk); k = 1, . . . , N ; i = 1, . . . , ñ

and H is the complex conjugate transpose.
As in any LS problem the normal matrix, from (7), is

defined as (XHX). We note again that we do not advocate
explicitly forming and inverting the normal matrix and



suggest that techniques [7, 6] such as Cholesky Factorisa-
tion, Househoulder Transformation and QR Factorisation be
utilised instead to obtain the LS solution.

To re-parameterise the model in terms of the coefficients
â1, . . . , ân, b̂1, . . . , b̂m ∈ R (n, m ∈ N) of Â and B̂
respectively, involves only a simple transformation [20], i.e.
for the parameters of Â let

Mk(s) := Fk(s)E(s) (9)

= mk
n−1s

n−1 + · · ·+ mk
k−1s

k−1; k = 1, . . . , n,

where k represents the kth basis function, then

â = Mα + e, (10)

where â and e are the parameter vectors of Â(s) and E(s)
respectively, α is the vector of parameters in (5) and

M :=


m1

0 0 · · · 0

m1
1 m3

1

. . .
...

...
... 0

m1
n−1 m3

n−1 · · · m2ñ−1
n−1

 . (11)

The re-parameterisation for B̂(s) follows similar lines.

III. BOUND ON THE CONDITION NUMBER

The condition number of the LS problem as described in
Section II is defined as

κ :=
λmax(XHX)
λmin(XHX)

=
σ2

max(X)
σ2

min(X)
, (12)

where λmax and λmin are the maximum and minimum eigen-
values respectively and σmax and σmin are the maximum and
minimum singular values respectively.

We now utilise this definition to show the existence of
an upper bound on the condition number when Frequency
Localising Basis Functions are used in the parametrisation
of the estimated model. The following result is obtained:

Theorem 1: Consider the LS problem stated in Section II,
and assume that:

1) 0 < Gmin ≤ Gmax < ∞, where1

Gmin := min
{

1, inf
ω∈R

|G(jω)|
}

Gmax := max
{

1, sup
ω∈R

|G(jω)|
}

(13)

2) The number of sine waves in {u(t)}t∈R, N , is equal
to 2ñ.

3) The frequencies of the sine waves in {u(t)}t∈R are
given by2

ω1 = γ−1/2p1

ωk =
√

pk−1pk; k = 2, . . . , 2ñ, (14)

1Condition 1 is equivalent to assuming that G does not have any poles
nor zeros on the imaginary axis.

2The value of ω1 has been chosen so that the frequencies in {u(t)}t∈R
are logarithmically spaced (see Corollary 1 for the proof of this).

and the breakpoints for the basis functions, pk, are
logarithmically spaced; i.e.,

pk+1 = γpk; k = 1, . . . , 2ñ− 1 (15)

for some γ > 1.

Then, if

inf
i∈N

|Fi(jωi)| > 4
Gmax

Gmin

∞∑
k=1

sup
i∈N

|Fi(jωi+k)|, (16)

there is a constant K > 0, independent of N , such that
κ ≤ K.

Proof: According to (12), we need bounds for
λmin(XHX) = σ2

min(X) and λmax(XHX) = σ2
max(X).

To achieve this, we can use Wittmeyer’s bounds on the
eigenvalues of a matrix [21, 3]. For σmin(X), by (16) and
the fact that by (6), |Fi(jωi+k)| ≥ |Fi(jωi−k)| whenever
1 ≤ i− k < i + k ≤ 2ñ, we have that

σmin(X) ≥ min
i=1,...,N

|Xii| −
∑

k=1
k 6=i

N

∣∣∣∣Xik + Xki

2

∣∣∣∣


− max
i=1,...,N

N∑
k=1

∣∣∣∣Xik −Xki

2

∣∣∣∣ (17)

≥ Gminh0 − 2Gmax

∞∑
k=1

h̄k − 2Gmax

∞∑
k=1

h̄k

= Gminh0 − 4Gmax

∞∑
k=1

h̄k > 0,

where

h0 := inf
i∈N

|Fi(jωi)|

h̄k := sup
i∈N

|Fi(jωk+i)|; k ∈ N0 . (18)

Next, to bound σmax(X) we have that

σmax(X) ≤ max
i=1,...,N

N∑
k=1

∣∣∣∣Xik + Xki

2

∣∣∣∣
+ max

i=1,...,N

N∑
k=1

∣∣∣∣Xik −Xki

2

∣∣∣∣ (19)

≤ 2Gmax

∞∑
k=0

h̄k + 2Gmax

∞∑
k=1

h̄k

≤ 4Gmax

∞∑
k=0

h̄k < ∞ .



Thus,

κ =
σ2

max(X)
σ2

min(X)

≤

(
4Gmax

∞∑
k=0

h̄k

)2

(
Gminh0 − 4Gmax

∞∑
k=1

h̄k

)2 (20)

= 16
(

Gmax

Gmin

)2


∞∑

k=0

h̄k

h0 − 4Gmax
Gmin

∞∑
k=1

h̄k


2

=: K .

This concludes the proof.

Remark 1: Condition (16) depends on the ratio
Gmax/Gmin. This quantity is always greater than or
equal to 1, and the bound on the condition number of
the LS problem is proportional to its square. Thus, it is
important, for numerical reasons, to choose frequency points
ω for which |G(jω)| is neither too big nor too small. In
particular, it is not convenient to choose points well beyond
the cut-off frequency of the system, since for these points
|G(jω)| can be very small.

Remark 2: Theorem 1 establishes that when utilising Fre-
quency Localising Basis Functions, the condition number is
uniformly bounded irrespective of the system dynamic range.

We next establish a lower bound on the logarithmic
spacing, γ, for which assumption 3 in Theorem 1 is satisfied
and for which the condition (16) holds.

Corollary 1: Under the assumptions of Theorem 1, con-
dition (16) holds if

γ >

2e15/448 Gmax

Gmin
+

√
4e15/224

(
Gmax

Gmin

)2

+ 1

2

.

(21)

Proof: By (15), we have that

pk = γk−1p1; k = 1, . . . , N (22)

then, by (14),

ω1 = γ−1/2p1

ωk =
√

γk−2p1γk−1p1 = γk−3/2p1; k = 2, . . . , 2ñ .
(23)

Thus,

|Fi(jωi+k)|

= |ωi−1
i pi|

i∏
l=1

1
|jωi+k + pl|

= |(γi−3/2p1)i−1γi−1p1|
i∏

l=1

1
|jγi+k−3/2p1 + γl−1p1|

=

√
γ1−2ik

i∏
l=1

√
1 + γ−2(k+l)+3

(24)

=
γ−k√

1 + γ−2(k+i)+3
|Fi−1(jωi+k−1)|

≤ |Fi−1(jωi+k−1)|; i = 2, 3, . . . ,

hence

h0 = lim
i→∞

|Fi(jωi)|

h̄k = |F1(jωk+1)| =

√
γ1−2k

1 + γ1−2k
; k ∈ N0 . (25)

Also,

|F1(jω1)| =
√

γ

1 + γ
< 1 . (26)

Now,

h̄k =

√
γ1−2k

1 + γ1−2k
≤
√

γ1−2k = γ1/2−k; k ∈ N0, (27)

hence
∞∑

k=1

h̄k ≤
∞∑

k=1

γ1/2−k = γ−1/2
∞∑

k=0

γ−k =
γ1/2

γ − 1
. (28)

On the other hand,
∞∏

l=1

√
1 + γ3−2l = exp

(
1
2

∞∑
l=0

ln(1 + γ1−2l)

)

= exp

(
1
2

ln γ +
1
2

∞∑
l=0

ln(1 + γ−1−2l)

)

≤ √
γ exp

(
1
2

∞∑
l=0

γ−1−2l

)
(29)

=
√

γ exp
(

1
2

γ

γ2 − 1

)
,

hence

h0 =
√

γ
∞∏

l=1

√
1 + γ3−2l

≥ exp
(
−1

2
γ

γ2 − 1

)
. (30)

Therefore, condition (16) is satisfied if

exp
(
−1

2
γ

γ2 − 1

)
> 4

Gmax

Gmin

γ1/2

γ − 1
. (31)

This condition cannot be explicitly solved for γ, but it can
be slightly relaxed to give a simpler expression for γ. To do



this we impose an additional constraint on γ. For instance,
if we force γ > 15, then

exp
(
−1

2
γ

γ2 − 1

)
≥ exp

(
−1

2
15

152 − 1

)
= e−15/448 .

(32)
Thus, (31) holds if

e−15/448 > 4
Gmax

Gmin

γ1/2

γ − 1
,

which is equivalent to

γ >

2e15/448 Gmax

Gmin
+

√
4e15/224

(
Gmax

Gmin

)2

+ 1

2

.

(33)
Notice that since Gmax/Gmin ≥ 1, the right side of (33) is
always greater than 19, so forcing γ > 15 in (32) is not too
conservative. Moreover, lower values of γ give lower bounds
for exp(−γ/(2(γ2−1))), which give even higher values for
the lower bound of γ in (33).

Remark 3: A better bound for γ may be achieved by
solving the inequality

exp
(
−1

2
γ

γ2 − 1

)
> 4

Gmax

Gmin

γ1/2

γ − 1
. (34)

For example, if Gmax/Gmin = 1, (33) gives γ > 19.06,
while (34) gives γ > 18.82. This shows that both results are
quite similar.

Remark 4: Even though it has been shown that a low
condition number is a good sign of numerical stability, it is
also true that a high condition number does not necessarily
imply ill-conditioning. For example, if XT X has a diagonal
structure, with some very high and also some very low
diagonal elements, this usually does not give rise to any
numerical problems, since the inverse of XT X is a diagonal
matrix whose elements are the inverses of the respective
diagonal elements of XT X. See e.g. [6, pp. 28] for more
details.

IV. AN EXTENSION TO HIGHER ORDER FILTERS

In order to improve the numerical stability of the LS prob-
lem for lower values of γ than those satisfying Corollary 1,
we can consider sharper basis functions than those proposed
in [20]. An alternative is to use filters of the form:

Fk(s) := sq(k−1)pq
k

k∏
i=1

1
(s + pi)q

; k = 1, . . . , 2ñ, (35)

where q ∈ N and 0 < p1 < · · · < p2ñ < ∞.
Figure 2 shows the magnitude of the frequency response of

the basis functions (35) for p1 = 1, p2 = 10 and p3 = 100,
with q = 1 and q = 2.

For these sharper basis functions we have the following
result, which is an extension of Corollary 1.
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Fig. 2. Bode magnitude plots for basis functions for q = 1 (top) and
q = 2 (bottom). Solid line: F1(s), dotted line: F2(s), dashed line: F3(s).

Corollary 2: Under the assumptions of Theorem 1, con-
dition (16) holds for the basis functions given by (35) if

exp
(
−q

2
γ

γ2 − 1

)
> 4

Gmax

Gmin

γq/2

γq − 1
. (36)

Proof: The proof of Theorem 1 still holds if we replace
(6) by (35). Thus, as in the proof of Corollary 1, we have
that

ω1 = γ−1/2p1

ωk =
√

γk−2p1γk−1p1 = γk−3/2p1; k = 2, . . . , 2ñ.
(37)

Thus,

|Fi(jωi+k)| =

( √
γ1−2ik∏i

l=1

√
1 + γ−2(k+l)+3

)q

=

(
γ−k√

1 + γ−2(k+i)+3

)q

|Fi−1(jωi+k−1)|

≤ |Fi−1(jωi+k−1)|; i = 2, 3, . . . , (38)

hence

h0 = lim
i→∞

|Fi(jωi)|

h̄k = |F1(jωk+1)| =
(

γ1−2k

1 + γ1−2k

)q/2

; k ∈ N0 . (39)

Also,

|F1(jω1)| =
(

γ

1 + γ

)q/2

< 1. (40)

Now,

h̄k =
(

γ1−2k

1 + γ1−2k

)q/2

≤ (γ1−2k)q/2 = γq/2−qk; k ∈ N0,

(41)



so
∞∑

k=1

h̄k ≤
∞∑

k=1

γq/2−qk = γ−q/2
∞∑

k=0

γ−qk =
γq/2

γq − 1
. (42)

Next,
∞∏

l=1

(1 + γ3−2l)q/2 = exp

(
q

2

∞∑
l=0

ln(1 + γ1−2l)

)

= exp

(
q

2
ln γ +

q

2

∞∑
l=0

ln(1 + γ−1−2l)

)

≤ γq/2 exp

(
q

2

∞∑
l=0

γ−1−2l

)
(43)

= γq/2 exp
(

q

2
γ

γ2 − 1

)
,

hence

h0 = lim
i→∞

|Fi(jωi)|

=

( √
γ∏i

l=1

√
1 + γ3−2l

)q

(44)

≥ exp
(
−q

2
γ

γ2 − 1

)
.

Therefore, condition (16) is satisfied if

exp
(
−q

2
γ

γ2 − 1

)
> 4

Gmax

Gmin

γq/2

γq − 1
. (45)

Remark 5: Notice that the left side of (36) is a mono-
tonically increasing function of γ, and its right side is
monotonically decreasing in γ. Hence, if (36) holds for some
γ = γ0, it also holds for all γ ≥ γ0. Furthermore, since the
left side of (45) increases with q, and its right side decreases
with q, using higher values of q will improve the numerical
conditioning of the LS problem.

V. EXAMPLE

To illustrate the potential of the FLBFs we provide a
practical example based on real experimental data3 collected
from a frequency response test of a large power transformer.
It is well known that the fitting of a parametric model to this
large dynamic range frequency response data using standard
techniques is, at the very least, extremely difficult [18].

Figures 3 and 4 clearly show that the frequency localising
basis functions provide an extremely good fit over 5 decades
of frequency and 20 resonant modes. This is a very large
dynamic range by any standard. Note that some low fre-
quency data points were deliberately removed before fitting
the model due to the possible contamination of the data
with respect to the 50Hz interference from the mains power
supply.

Figures 5 and 6 show the magnitude and phase responses
of a model obtained by using the technique developed in

3The authors would like to thank Connell Wagner of Australia for making
available the data.

[4], using orthogonal polynomials and 10 S-K iterations.
As it can be seen, this technique gives a nice fit, except
for some frequency regions. However, the coefficients of
the polynomials obtained range from 1 to 9.4 × 10240; this
implies that there could be some potential overflow problems
over larger frequency ranges.

The condition number obtained for this example, when
using the FLBFs, is 1.9×1011. This number seems extremely
high, but as seen on Figures 3 and 4, there does not appear
to be a numerical problem. This discrepancy motivates the
study of a different measure for the conditioning of such
problems for future work.
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VI. CONCLUSION

We have established a bound on the condition number,
independent of the frequency range, of the least squares
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als [4]. Frequency response data (o), model (-).

problem for an Output Error model where frequency lo-
calising basis functions have been utilised. In addition, we
have considered higher order basis functions, to model sharp
resonances, and we have obtained explicit conditions on the
frequency separation between these basis functions, under
which the condition number can be bounded. It has also been
demonstrated, via a real example, that frequency localising
basis functions have merit when fitting a parametric model
with a large dynamic range.
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