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Abstract— Optimal test signals are frequently specified in
terms of their second order properties, e.g. autocovariance or
spectrum. However, to utilize these signals in practice, one
needs to be able to produce realizations whose second order
properties closely approximate the prescribed properties. Of
particular interest are binary waveforms since they have the
highest form-factor in the sense that they achieve maximal
energy for a given amplitude. In this paper we utilize ideas
from model predictive control to generate a binary waveform
whose sampled autocovariance is as close as possible to some
prescribed autocovariance. Several simulated examples are
presented verifying the veracity of the algorithm. Also, a proof
of convergence is given for the special case of bandlimited white
noise. This proof is based on expressing the system in the form
of a switched linear system.

I. INTRODUCTION

In many fields, the problem of generating a waveform hav-
ing specified second order properties arises, see for example
[1], [5], [6], [7], [12], [16], [17]. For instance, in experiment
design [3], [8] one typically obtains an optimal test signal
specified in terms of its spectral properties. This leads to
the problem of implementing a real signal with a specified
spectrum. Moreover, it is usual that the input should also be
constrained in its amplitude, i.e. the amplitude must lie in an
interval [a, b] ⊂ R. In general, frequency domain techniques
do not work properly with this kind of constraint, and as such
are translated into an ‘equivalent’ power constraint under
which the input is designed to satisfy the conditions.

In many applications it is important to implement an input
signal which, within the constraints of its amplitude, has
maximum power. This is the case, for example, in experiment
design, where the quality of the estimation typically increases
with the signal to noise ratio. The signal to noise ratio is
obviously improved by choosing an input with high power.
Binary signals have precisely this desirable property: their
power is maximum for a given amplitude constraint [13].
This then motivates the question of how to design a binary
signal with a given autocovariance.

This question arises in many areas of physics and en-
gineering. For example, the study of two-phase random
media [16], [17], [1], [12], [6] (e.g. ferromagnetic materials,
composites, porous materials, microemulsions, ceramics or
polymer blends) involves the measurement of the statistical
properties of a material. The measurements are commonly
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restricted to the first two moments, and then the simulation of
the material properties must be based on these measurements.

Several techniques have been proposed to solve this prob-
lem (see e.g. [5], [7], [16], [17], [1], [12], [6] and the refer-
ences therein). For example, [5] and [7] consider a scheme
consisting of a linear system followed by a static nonlinearity.
The nonlinear block, in this case, is used to force the output
signal to be binary, and the linear system is tuned to produce
an output signal with the desired autocovariance. However, it
can be shown that this method has severe limitations, e.g. it
cannot be used to generate binary signals with a bandlimited
spectrum [7], [15]. A similar procedure consisting of a linear
system followed by a level crossing block is developed in
[6]. A simulated annealing method is proposed in [16] and
[17]. The methods outlined above generally involve complex
calculations and are computationally intensive.

In this paper, we develop a simple procedure to solve the
same problem, based on the use of the Receding Horizon
concept commonly employed in Model Predictive Control
[2]. Heuristically speaking, the idea is to solve, for each
time instant, a finite horizon optimisation problem to find
the optimal set of the next, say, T values of the sequence
such that the sampled autocovariance sequence so obtained
is as close as possible (in a prescribed sense) to the desired
autocovariance. One then takes the first term of this optimal
set for the sequence, advances time by one step and repeats
the procedure. The idea behind this procedure is thus closely
related to finite alphabet receding horizon control [10], where
receding horizon concepts are employed to control a linear
plant whose input is restricted to belong to a finite set.

Notice that in order to find the true optimal binary se-
quence, we would have to compute the sample autocovari-
ance function of all sequences in {0, 1}N and then choose
the sequence whose autocovariance is closest to the desired
one according to some prescribed norm. This procedure,
however, would be computationally intractable as it involves
2N comparisons, a truly large number in general.

Several kinds of measures can be used to compare the sam-
pled autocovariance of the generated signal with the desired
autocovariance, including the Euclidean or the infinity norm
of their difference. However, we have verified via simulations
that the Euclidean norm produces very good results when
compared to other norms. Furthermore, by Theorem 1 of
Section IV, the algorithm is shown to converge for a special
case when the Euclidean norm is used.

The algorithm described in this paper is fast and easy
to implement when compared with the existing methods.
The algorithm can also be run in realtime. This allows



the possibility of implementing adaptive input generation
schemes, which can be useful when the signal properties
must change with time, as in sequential experiment design
procedures [14, pg. 331].

To demonstrate the application of the algorithm, two
examples, motivated by experiment design, are provided. A
typical input signal used in system identification is bandlim-
ited white noise [8, Section 13.3]. In this paper we show how
the proposed algorithm is used to generate this type of signal
and also provide the obtained spectrum to highlight how
closely it approximates the desired spectrum. The second
example is inspired by recent work on experiment design
where it was shown that a more robust input for a particular
class of systems is in fact one with a bandlimited ‘1/f ’
spectrum [11], [4]. We again provide the spectrum generated
by the receding horizon algorithm as well as that of the
prescribed signal, for the purpose of comparison.

The paper is structured as follows. In Section II we present
the algorithm and provide a detailed explanation. Section III
shows the results of some numerical examples that illustrate
the quality of the signals generated by the algorithm. In
Section IV we prove convergence for the special case of
generating a pseudo white noise sequence (i.e. when the
desired autocovariance sequence is a Kronecker delta at 0).
We present conclusions in Section V.

II. THE ALGORITHM

In this Section we formulate and develop the receding
horizon algorithm that generates a binary signal with a
prescribed autocovariance. This is done in two parts. Firstly
we convert the problem to an equivalent one that allows us
to simplify the computation and to force the generated signal
to have zero mean. We then develop the algorithm as a series
of steps and finally present it as Matlabr code.

Let {rd
k}∞k=0 be a given desired autocovariance sequence.

Also, let N be the length of the signal to be generated,
n the number of lags of {rd

k}∞k=0 to be compared to the
corresponding lags of the sampled autocovariance sequence
of the designed signal, and m be the length of the receding
horizon over which we apply the optimisation algorithm.

Notice that in order for {rd
k}∞k=0 to be a valid autoco-

variance sequence, it must be positive definite [9, pg. 329],
i.e. ∑

1≤i≤j≤M

aia
∗
jri−j ≥ 0 (1)

for every M ∈ N and {ai}M
k=1 ⊆ CM . Here ∗ denotes

complex conjugation.
For simplicity, we force the designed signal to have zero

mean and restrict its values to {−1, 1}. This implies that rd
0

must be equal to 1.
The proposed algorithm is as follows:

(A) Conversion to an Equivalent Problem

We begin by converting the desired autocovariance se-
quence {rd

k}∞k=0 into the non-central autocovariance of a

{0, 1} sequence. That is, define

r̃d
k :=

1
4
(rd

k + 1), k = 0, . . . , n. (2)

Remark 1: The idea here is that the algorithm will gen-
erate a sequence {ỹi}N

i=1 taking only the values {0, 1} such
that

1
N

N∑

i=k+1

ỹiỹi−k ≈ r̃d
k, k = 0, . . . , n, (3)

where the left side corresponds to the sampled non-central
autocovariance of the signal evaluated at lag k. The approx-
imation criterion will be the Euclidean norm, as shown in
step 5 below.

Notice that since ỹi ∈ {0, 1} for every i, we see that
equation (3) for k = 0 is equivalent to

1
N

N∑

i=1

ỹi ≈ r̃d
0 =

1
2
, k = 0, . . . , n. (4)

This implies that equation (3) is actually forcing {ỹi}N
i=1 to

have sampled mean 1/2, or equivalently, forcing the designed
signal to have zero sampled mean.

(B) The Algorithm

We now provide an outline of the algorithm as a series of
steps:

1) Set t = 1.
2) Set (y′t, . . . y

′
t+m−1) = 01,m ∈ {0, 1}m, where 01,m

denotes a zero matrix of order 1×m.
3) Compute the first n lags of the sampled non-central

autocovariance of (ỹ1, . . . , ỹt−1, y
′
t, y

′
t+1, . . . y

′
t+m−1)

(or of (y′1, . . . y
′
m), if t = 1) via

r′k :=
1

t + m− 1

t+m−1∑

i=k+1

y′iy
′
i−k, k = 0, . . . , n,

(5)
where we are considering y′i = ỹi for i = 1, . . . , t− 1.

4) Generate a new m-tuple (y′t+1, . . . , y
′
t+m) ∈ {0, 1}m

and repeat step 3 until all m-tuples have been tested.
5) Let ỹt = y′t for the m-tuple (y′t, . . . y

′
t+m−1) ∈ {0, 1}m

for which ‖{r′i}n
i=0 − {r̃d

i }n
i=0‖2 is minimum. If this

norm is equal for both values of y′t, take ỹt = 0.
6) If t < N , let t = t + 1 and go to step 2.
7) Convert the {0, 1}N -tuple (ỹ1, . . . , ỹN ) into a {−1, 1}

N -tuple (y1, . . . , yN ) via

yt := 2ỹt − 1, t = 1, . . . , N. (6)

It is straightforward to extend the method to more general
cases. For example, to generate signals with non zero mean
y and/or taking values in {a, b}, it is necessary to alter
equations (2) and (6), and to let rd

0 = y2.
To provide further insight into the implementation of

the algorithm we add the following comments: First, the
computation of the sampled autocovariance at step 3 can
be done in a recursive manner (with respect to t), which
reduces the execution time of the algorithm. Second, the



execution time of the algorithm depends exponentially on
m. However, it can be empirically verified that m = 1 gives
very good results (in fact, we will show later in Section
IV that the algorithm converges successfully for m = 1 in
a particular case). Thus, for ease of reference, we present
below an optimised version of the algorithm for m = 1 in
Matlabr code:

% Initialization
y = zeros(N+n, 1);
r0 = zeros(n+1, 1);
r1 = zeros(n+1, 1);

% Conversion of the autocovariance
% sequence to the equivalent problem
rd = 0.25*(rd + 1);

for i = 1:N,

% Calculation of the next
% autocovariance sequence, if we
% add "0" or "1" to the output
% signal, respectively
r0 = r0 - rd;
r1 = r0 + [1; y(n+i-1:-1:i)];

% Comparison of the resulting
% autocovariance sequences
if norm(r0) > norm(r1),

y(n+i) = 1;
r0 = r1;

end

end

% Conversion to the original problem
% to obtain the desired sequence
y = 2*y(n+1:end) - 1;

Here, y is the generated input signal; r0 and r1 are the
non-central autocovariances of the signal plus an additional
0 or 1, respectively; and rd is the desired autocovariance
sequence (to be specified by the user).

As with {rd
k}∞k=0, the user of the algorithm also has to

choose three other variables: N , n and m. The choice of
N depends on the external circumstances which arise in the
particular context where the user needs to generate a binary
signal; for example, in experiment design, N usually depends
on a number of factors such as the sampling period, the total
time the plant will be available for experimentation and the
required precision of the parameter estimates. The variable
n depends on the characteristics of the prescribed autoco-
variance sequence {rd

k}∞k=0; in particular, it is convenient to
choose n such that rd

k ≈ 0 for all k > n. The choice of m is
a tradeoff between precision and execution time, as will be
seen in the examples provided in the next Section; however,
for most practical applications, it seems that m = 1 provides
a very good performance.
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Fig. 1. Characteristics of the generated pseudo white noise signal for
m = 1, N = 1000 and n = 50.

III. INPUT SIGNAL DESIGN EXAMPLES

In this section we present two examples. The first example
deals with the problem of generating pseudo random signals
(i.e. pseudo white noise). The second example relates to the
generation of bandlimited ‘1/f ’ noise, which has recently
been shown to possess important robustness properties in
experiment design [11].

A. Pseudo white noise

The tuning parameters of the algorithm are N , the number
of data points to be generated; n, the number of lags to be
considered for the comparison of the desired and sampled
autocovariance sequences; and m, the length of the receding
horizon.

For m = 1, N = 1000 and n = 50, we obtain the results
presented in Figure 1. From this figure, we can see that both
the autocovariance and spectrum of the generated signal are
very similar to those of white noise. If we increase N to
106, we obtain Figure 2, which shows that the algorithm has
remarkably good asymptotic properties. With respect to the
execution time, we find that the algorithm requires only a
small amount of time to run, e.g. on a PC with a Pentium
III 871 Mhz CPU and 512 Mb of RAM it takes less than
42 sec to generate 106 points! A plot of the dependence of
the cost function on N is given in Figure 3. Note that the
cost is on a logarithmic scale. From this figure it can be
seen that the convergence rate of the algorithm appears to
be O(1/N) (although the proof given below in Section IV
establishes a convergence rate of O(1/

√
N), as it is based on

a conservative upper bound for the cost function ‖{r′i}n
i=0−

{r̃d
i }n

i=0‖2).
In Figure 4 the dependence of the cost function on the

horizon length m is shown (for N = 104 and n = 50). As
expected, it can be seen that the cost function decreases with
m. Note however that the computational complexity of the
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Fig. 2. Characteristics of the generated pseudo white noise signal for
m = 1, N = 106 and n = 50.
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N , for m = 1 and n = 50, when generating pseudo white noise.

algorithm depends exponentially on m, thus a tradeoff needs
to be considered between accuracy and execution time.

B. Bandlimited ‘1/f ’ noise

Bandlimited ‘1/f ’ noise is defined by the following spec-
trum:

φ1/f (ω) :=





1/ω

ln ω − ln ω
, ω ∈ [ω, ω],

0, otherwise,
(7)

where ω, ω ∈ R+ (ω < ω). The autocovariance sequence of
this signal is given by

r
1/f
k :=

1
ln ω − ln ω

∫ ω

ω

cos kx

x
dx; k ∈ N0. (8)
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the horizon length, for N = 1000 and n = 50, when generating pseudo
white noise.
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Fig. 5. Power spectral density of bandlimited ‘1/f ’ noise signal for ω = 1
and ω = 2.

Figure 5 shows the ideal spectral density of bandlimited
‘1/f ’ noise for ω = 1, ω = 2. In Figure 6 we present
the results obtained from the receding horizon algorithm for
ω = 1, ω = 2, m = 1, N = 106 and n = 50. This last
Figure verifies the ability of the algorithm to generate a
binary non-white noise signal. The discrepancies between
the desired and the achieved autocovariances seem to be due
to the impossibility of generating a binary signal with a true
bandlimited ‘1/f ’ spectrum, as the results do not appear to
improve significantly by increasing m and n.

IV. CONVERGENCE

In this section we study the convergence of the receding
horizon algorithm for the special case of generating ‘pseudo’
white noise, i.e., when the desired autocovariance sequence
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Fig. 6. Characteristics of the generated pseudo bandlimited ‘1/f ’ noise
signal for m = 1, N = 106 and n = 50.

is a Kronecker delta (rd
0 = 1 and rd

k = 0 for k 6= 0). We
proceed by describing the algorithm as a switched linear
system and then apply a simple geometric inequality to
establish its convergence.

A. A switched linear system representation of the algorithm

To aid the development of the switched linear system, let

xt := [yT
t rT

t ]T ,

yt := [yt−n · · · yt−1]T ∈ Rn×1, (9)

rt := [rn,t · · · r1,t]T ∈ Rn×1,

where

rk,t :=
t−1∑

i=k+1

(yiyi−k − rd
k); 1 ≤ k ≤ min(t− 2, n) (10)

and
rd := [rd

n · · · rd
1 ]T ∈ Rn×1. (11)

Now,
rk,t+1 = rk,t + ytyt−k − rd

k, (12)

allowing the dynamics of rt to be given by

rt+1 = rt + ytyt − rd (13)

and the initial condition

r0 = 0n,1. (14)

The dynamics of yt are given by

yt+1 =
[

0n−1,1 In−1

0 01,n−1

]
yt +

[
0n−1,1

1

]
yt (15)

where In−1 is an identity matrix of order n − 1, and the
initial condition

y0 = 0n,1. (16)

For the generation of pseudo white noise, we have that
rd = 0n,1. This simplifies the expressions, and allows the

algorithm to be written as the following switched linear
system:

xt+1 =






0n−1,1 In−1

0 01,n−1
0n,n+1

−In In


xt +



0n−1,1

−1
0n,1


 , yt = −1,




0n−1,1 In−1

0 01,n−1
0n,n+1

In In


xt +



0n−1,1

1
0n,1


 , yt = 1.

(17)

Notice that from (17) we have that

rt+1 = rt ± yt, (18)

where the ± sign is chosen so as to make ‖rt+1‖2 as small
as possible.

B. Proof of convergence

The basic idea behind the proof of convergence is to
establish a worst case bound for ‖rt‖2, and to check that
according to this bound, ‖rt/t‖2 → 0 as t → ∞. Thus,
to proceed, we require the following result from functional
analysis:

Lemma 1: Let x,y be elements of an inner product space
(X, 〈, 〉). Then

min{‖x + y‖2, ‖x− y‖2} ≤ ‖x‖2 + ‖y‖2, (19)

where ‖z‖ :=
√
〈z, z〉 for every z ∈ X .

Proof: Notice that

‖x± y‖2 = ‖x‖2 + ‖y‖2 ± 2Re〈x,y〉, (20)

so

min{‖x + y‖2, ‖x− y‖2}
= ‖x‖2 + ‖y‖2 − 2|Re〈x,y〉| (21)

≤ ‖x‖2 + ‖y‖2.

The convergence of the algorithm for the special case of
generating pseudo white noise is established in the following
theorem.

Theorem 1: For the algorithm described by (17), where
{yt}∞t=1 ⊆ {−1, 1}N is chosen such that

‖rt +ytyt‖2 = min{‖rt−yt‖2, ‖rt +yt‖2}; t ∈ N, (22)

it holds that

lim
t→∞

1
t

t∑

i=k+1

yiyi−k = rd
k; k = 1, . . . , n. (23)

Proof: First notice that

‖yt‖22 = n; t > n. (24)



Hence, by Lemma 1 and (18) we have that

‖rt+1‖22 = min{‖rt + yt‖22, ‖rt − yt‖22}
≤ ‖rt‖22 + ‖yt‖22 (25)

= ‖rt‖22 + n; t > n.

Since r0 = 0n,1 (see (14)), we can iterate (25) over t ∈ N,
giving

‖rt‖22 ≤ nt + c; t > n, (26)

where c ∈ R+ is an upper bound on
∑n

t=1 ‖rt‖22. Now, by
applying the Cauchy-Schwartz inequality to (10) and using
the fact that |yt| = 1 and rd

k = 0 we have that ‖rt‖22 ≤
n(t− 1), so

n∑
t=1

‖rt‖22 ≤
n∑

t=1

n(t− 1) =
n3

2
, (27)

hence we can take c = n3/2. Then, if we divide (26) by t2

and recall the definition of rt (see (10)), we obtain

n∑

k=1

[
t−1∑

i=k+1

yiyi−k − rd
k

t

]2

≤ n

t
+

c

t2
; t = n+2, . . . (28)

Therefore,
∣∣∣∣∣
1
t

t−1∑

i=k+1

(yiyi−k − rd
k)

∣∣∣∣∣ ≤
√

n

t
+

c

t2
; t = n+2, . . . (29)

Since the right side of (29) tends to 0 as t →∞, we conclude
that

lim
t→∞

1
t

t∑

i=k+1

yiyi−k = lim
t→∞

t + 1
t

1
t + 1

t∑

i=k+1

yiyi−k

= rd
k; k = 1, . . . , n. (30)

Theorem 1 establishes that the algorithm generates a
binary signal whose sampled autocovariance converges, as
t goes to ∞, to the autocovariance of white noise.

V. CONCLUSIONS

In this paper we have presented a novel method for
generating binary signals with a specified autocovariance.
The algorithm is based on ideas from model predictive
control, hence utilizes a receding horizon algorithm. The
algorithm is simple and straightforward to implement, and
exhibits fast convergence as verified by simulation studies.
We have shown empirically that the algorithm has good
asymptotic properties, and have been able to establish global
convergence for the case of generating pseudo white noise.
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