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Abstract Presented in this chapter is a tutorial on the design of input signals for
system identification. The chapter concerns the details of basic optimal experiment
design, computational issues, implementation and conditions that lead to an optimal
input signal. It is also addressed how the two fundamental issues associated with
system identification, model structure identification and model validation relate to
experiment design. Throughout the chapter, a simple FIR example is employed to
illuminate the concepts presented.

1 Introduction

The problem of how to determine an adequate model from experimental data –
system identification – is a multi faceted topic, imposing quite high demands on
the user. Two of the core issues are model structure selection and model validation.
The key to simplify these problems and others lies in ensuring that suitable data is
available for the modeling. What this means depends very much on what the model
is going to be used for. We illustrate this with a simple example.

Example 1. Consider the finite impulse response (FIR) system

yt =
n

∑
k=1

θkut−k + et (1)
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where yt is the output, ut is the input and where {et} is zero mean white noise
with variance1 λ = E[e2

t ], and where θk ∈ R, k = 1, . . . ,n are the impulse response
coefficients.

Let θ =
[
θ1 . . . θn

]T ∈ Rn and suppose that the objective is to estimate the fre-
quency response G(e jω ,θ) = ∑

n
k=1 θke− jωk of the system. In particular let us as-

sume that the frequency of interest is ω = 0,, i.e. we are interested in the static gain
∑

n
k=1 θk of the system. With a constant input ut = 1, t = 1, . . ., the system output will

be

yt =

(
n

∑
k=1

θk

)
+ et (2)

i.e. the output will fluctuate around the sought after quantity making the estimation
problem very simple regardless of the order of the system. However, with this input
the individual impulse response coefficients {θk}n

k=1 cannot be identified and thus,
e.g., the frequency response at other frequencies than 0 can not be recovered from
the data.

Thus, a given data set may be suitable for one application but not for another. In this
chapter we will outline how one can formulate optimal experiment design problems
whereby the application is taken into account.

The bibliography on optimal experiment design is extensive and include the by
now classical texts [14, 37, 2, 29]. The survey papers [1, 28] provide good overviews
of the area. Recently there have been contributions to design in the frequency do-
main [15], set-membership identification [6], applications-oriented experiment de-
sign [18, 23, 19, 4], plant-friendly design [9], convexification of the associated op-
timization problems [18, 23], robust experiment design [34], least-costly identifica-
tion where the cheapest experiment that fulfills given performance specifications is
designed [8], and closed loop experiment design [20]. Also the robustness proper-
ties of optimal experiment designs have been highlighted [26]. The four PhD theses
[22, 25, 3, 32] provide good coverage of recent developments.

In this tutorial we will follow the framework outlined in [19]. We will start in the
next section by discussing how to formulate such problems as optimization prob-
lems. Next we will consider how to “translate” such optimization problems into
a computationally tractable format. This is rooted in recent developments of con-
vex optimization. It is well known that typically solutions to this type of problem
depend on properties of the unknown system. Practical ways to handle this are dis-
cussed in Section 4. For applications where the amount of properties that have to be
extracted from the system by way of system identification is limited it turns out that
applications-oriented optimal experiment designs provide “added value”. The way
the estimated model affects the application becomes less sensitive to design choices
in the identification step. This is discussed in Section 5.

1 E[x] denotes expectation of a random variable x.
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In order to not become submerged in technical details, we will keep the exposi-
tion simple by restricting ourselves to models of the type (1), estimated by way of
standard least-squares.

2 Applications-oriented experiment design

2.1 The set of acceptable models

A simplified, but conceptually attractive way, to think of the objective of any mod-
eling activity is that a model should be delivered to the user such that when it is
used in the application, the resulting performance is acceptable. In fact, we could
split the universe of all possible models into two sets: 1) Eapp: the set of models for
which the performance of the application is acceptable, and 2) the set complemen-
tary to Eapp, consisting of all unacceptable models. The optimal experiment design
problem thus becomes that of designing an experiment such that it is ensured that
the resulting model belongs to the set of acceptable models Eapp. How to achieve
this depends on the underlying assumptions about the data generating mechanism,
i.e. the system, the used model and the estimation method. Here, for simplicity, we
will consider standard least-squares estimation.

How to quantify what acceptable performance means is of course application
dependent. Here we will for simplicity assume that this is captured by that a scalar
function is less than some given value 1/γ , we refer to Section 3.2 for details.

2.2 A stochastic framework

We will assume that data is generated by a system of the form (1). To simplify the
discussion we will assume that the model structure is known, i.e. only the parame-
ters θ =

[
θ1 . . . θn

]T ∈ Rn are unknown. We will return to the situation when the
structure is unknown in Section 5. With θ̂N denoting the parameter estimate based
on N input-output samples {yt , ut}N

t=1, the source of the discrepancy between θ̂N
and θ will then, neglecting unknown initial conditions, be due solely to the noise
{et} in (1). Assuming this quantity to be zero mean white noise implies that the
error in the parameter estimate will be random. More specifically, the least-squares
estimate of θ is given by [24]

θ̂N := R−1
N fN where RN :=

N

∑
t=1

ϕtϕ
T
t , fN :=

N

∑
t=1

ϕtyt

where ϕt =
[
ut−1 . . . ut−n

]T . Above, we have assumed that RN is full rank which
corresponds to that data is persistently exciting [24]. Using (1), simple algebra gives
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θ̂N−θ = R−1
N

N

∑
t=1

ϕtet

Assuming the noise to be normal distributed, this implies that also the parameter
estimate is normal distributed2

θ̂N−θ ∈ N(0,λR−1
N ) (3)

where λ is the variance of the noise λ = E[e2
t ]. From (3) it follows that (θ̂N −

θ)T RN
λ
(θ̂N − θ) is χ2-distributed with n degrees of freedom. With α denoting the

99.5% percentile of this distribution, this in-turn implies that the parameter estimate
will end up in the confidence ellipsoid

Eid :=
{

θ̄ : (θ̄ −θ)T RN

λ
(θ̄ −θ)≤ α

}
(4)

with 99.5% probability [24]. Notice that the ellipsoid Eid depends on the experimen-
tal conditions since RN depends on the used input sequence.

2.3 Stochastic applications-oriented experiment design

With the set of acceptable models Eapp given, one way of realizing the experiment
design paradigm outlined in Section 2.1 is to design the input sequence such that

Eid ⊆ Eapp (5)

since then with at least 99.5% probability, the model parameter estimate will belong
to Eapp.

The condition (5) can be achieved by many different types of experiments and
in order to make the problem well posed some criterion has to be introduced. In
[8] it was proposed that experiment design should try to minimize the experimental
cost. Following this, one should try to achieve (5) by as “cheap” an experiment as
possible. This leads to the following input signal design problem

min
uN

V (uN)

s.t. Eid ⊆ Eapp

(6)

where uN =
[
u1, . . . , uN

]T and where the function V (uN) should measure the cost
of the experiment.

To illustrate the approach we return to the frequency response estimation problem
again.

2 x ∈N(m,P) denotes that the random variable x is normal distributed with mean m and covariance
matrix P.
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Example 2 (Example 1 cont’d). The frequency response can be expressed as G(e jω ,θ)=

θ T Γ (e jω) where Γ (e jω) =
[
e− jω . . . e− jωn]T , ω ∈ R. Suppose that we want the

squared error

|G(e jω , θ̂N)−G(e jω ,θ)|2 = (θ̂N−θ)T
Γ (e jω)Γ ∗(e jω)(θ̂N−θ) (7)

(x∗ denotes the complex conjugate transpose of x) to be less than 1/γ where the
positive constant γ represents the desired accuracy. This means that

Eapp =

{
θ̄ : (θ̄ −θ)T

Γ (e jω)Γ ∗(e jω)(θ̄ −θ)≤ 1
γ

}
(8)

2.4 Alternative formulations

The formulation (6) was introduced in [19] but there exist other problem formula-
tions that aim at achieving a similar objective. Here we briefly outline an approach
that is closely connected to so called L-optimal design. We continue to use the fre-
quency function estimation problem as example. The frequency function estimate is
given by G(e jω , θ̂N) = θ̂ T

N Γ (e jω), which, being linear in θ̂N , has variance

E
[
|G(e jω , θ̂N)−G(e jω ,θ)|2

]
= Γ

∗(e jω)R−1
N Γ (e jω) (9)

due to (3). Thus the constraint

Γ
∗(e jω)R−1

N Γ (e jω)≤ β (10)

for some suitably chosen constant β , captures that a certain quality of the estimate
of G(e jω ,θ) is required. Replacing the set constraint in (6) by (10) gives

min
uN

V (uN)

s.t. Γ
∗(e jω)R−1

N Γ (e jω)≤ β

(11)

We refer to [23] for further details on this approach.

3 Computational aspects

When solving the input signal design problems (6) and (11) it is often more conve-
nient to do it in the frequency domain. Below we will show that we can cast both
these problems as convex programs in this domain.
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3.1 Choice of decision variables

It is the matrix RN in (6) and (11) that depends on the input. However, using the
input sequence directly as decision variable leads to a non-convex problem. Turning
to the frequency domain, the discrete Fourier transform (DFT) [27] of the input
sequence is given by

U(e jµk) :=
N

∑
t=1

ute− jµkt , µk = 2πk/N, k = 1, . . . ,N (12)

and with a periodic extension of the input, the DFT of the regressor sequence {ϕt}
is given by ∑

N
t=1 ϕte− jµkt =Γ (e jµk)U(e jµk). By Parseval’s theorem, [27], the matrix

RN can be expressed as

RN =
N

∑
t=1

ϕtϕ
T
t =

1
N

N

∑
k=1

Γ (e jµk)|U(e jµk)|2Γ
∗(e jµk) (13)

Now we let the input be parameterized by the coefficients {ct}N−1
t=0 as

|U(e jµk)|2 =
N−1

∑
t=0

cte− jµkt (14)

Then the (p,q)-element of RN is equal to c|p−q|. Thus RN is linearly parametrized
in terms of these cofficients. As we will see below this is instrumental in order to
convexify both (6) and (11).

Since |U(e jµk)|2 ≥ 0, it has to hold that

N−1

∑
t=0

cte− jµkt ≥ 0, k = 1, . . . ,N (15)

for {ct}N−1
t=0 to be a valid parametrization. One implication of this is that cN− j = c j.

These constraints thus have to be included.

3.2 Using the set of acceptable models

Let us now turn our attention to the set of acceptable models Eapp. Consider first the
frequency function estimation example.

Example 3 (Example 2 cont’d). As we saw in (4) the confidence set Eid is an ellip-
soid.

Furthermore, since (8) is quadratic in θ̄ , Eapp for the frequency response estima-
tion problem also is an ellipsoid3. It is easy to verify, see [19], that the set constraint

3 To be more precise it is a degenerate ellipsoid since Γ (e jω )Γ ∗(e jω ) is singular
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Eid ⊆ Eapp is equivalent to

RN− γλαΓ (e jω)Γ ∗(e jω)≥ 0 (16)

Now, since RN is linear in the decision variables {ct}N−1
t=0 , this inequality is a linear

matrix inequality (LMI) which is a convex constraint. If V (uN) is the input energy,
i.e. V (uN) = ∑

N
t=1 u2

t which in turn, using Parseval’s theorem, can be written

V (uN) = c0 (17)

then the optimal input signal design problem (6) can be written

min
c0,...,cN−1

co (18)

s.t.


co c1 . . . cN−1
c1 c0 c1 . . . cN−2
...

. . . . . . . . .
...

cN−2 cN−1
. . . . . . c1

cN−1 cN−2 . . . c1 c0

− γλαΓ (e jω)Γ ∗(e jω)≥ 0 (19)

N−1

∑
t=0

cte− jµkt ≥ 0, k = 1, . . . ,N (20)

cN− j = c j, j = 1, . . . ,N−1 (21)

which is a semi-definite program and hence convex.
For example for ω = 0, i.e. the static gain estimation problem discussed in Ex-

ample 1, we have

min
c0,...,cN−1

co (22)

s.t.


co c1 . . . cN−1
c1 c0 c1 . . . cN−2
...

. . . . . . . . .
...

cN−2 cN−1
. . . . . . c1

cN−1 cN−2 . . . c1 c0

− γλα


1 1 . . . 1
1 1 . . . 1
...

...
...

1 1 . . . 1
1 1 . . . 1

≥ 0 (23)

N−1

∑
t=0

cte− jµkt ≥ 0, k = 1, . . . ,N (24)

cN− j = c j, j = 1, . . . ,N−1 (25)

The diagonal elements in the matrix inequality give c0 ≥ γλα . However, then it is
straightforward to see that the choice c0 = c1 = . . .= cN−1 = γλα both satisfies the
matrix inequality and the positivity constraints (24). This solution corresponds to
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|U(e jµk)|2 =
{

Nγλα k = N
0 k = 1, . . . ,N−1

which in turn (taking the inverse DFT) corresponds to

ut =
√

γλα, t = 1, . . . ,N

Thus we have proven that a constant input signal is optimal when the static gain is
the quantity of interest.

In general, Eapp may not be convex. One can then use the following approximation.
Consider a set of acceptable models given by

Eapp =

{
θ̄ : Vapp(θ̄)≤

1
2γ

}
(26)

for some function Vapp(θ̄) that has a global minimum equal to zero at the true pa-
rameter value θ . A second order approximation is then given by

Vapp(θ̄)≈
1
2
(θ̄ −θ)TV ′′app(θ)(θ̄ −θ) (27)

since the gradient V ′app(θ) is zero by construction. Also, by construction, the second
derivative V ′′app(θ) is positive definite at the global optimum and when the approxi-
mation (27) is used in (26) the set of acceptable models is an ellipsoid given by

Eapp ≈
{

θ̄ : (θ̄ −θ)TV ′′app(θ)(θ̄ −θ)≤ 1
γ

}
(28)

Following the reasoning in Example (3) gives that the condition Eid ⊆ Eapp (5) can
be approximated by

RN− γλαV ′′app(θ)≥ 0 (29)

3.3 Using variance constraints

Now we turn to the alternative constraint formulation (10) which involves the in-
verse of RN . By making use of Schur complements, see e.g. [38], it can be trans-
lated to a constraint that is linear in RN . Consider the partitioned hermitian ma-
trix M =

(
A B
B∗ C

)
where A is square and non-singular. The Schur complement of

A in M is defined as SA := C− B∗A−1B and it holds that M ≥ 0 if and only if
A > 0 and SA ≥ 0. The constraint (11) can be written as β −Γ ∗(e jω)R−1

N Γ (e jω)≥ 0
where the left-hand side is the Schur complement of RN in the partitioned matrix
MR :=

(
RN Γ (e jω )

Γ (e jω )∗ β

)
. Since RN > 0 by assumption it follows that (11) is equiv-

alent to MR ≥ 0. Using the same arguments again we find that MR ≥ 0 if and only
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if the Schur complement of β in MR is positive semi-definite (β is positive by as-
sumption):

RN−
1
β

Γ (e jω)Γ ∗(e jω)≥ 0 (30)

Note that, with β = 1
λαγ

, (30) is also equivalent to the constraint (29) with Vapp(θ̂N)

given by (7). Thus we end up with exactly the same optimization problem (18)–(21)
as before, but with β replacing 1

λαγ
. We refer to [23] for generalizations.

4 How to handle system dependency of the optimal solution

In the formulation (6), typically either Eid or Eapp (or both) depend on the true
system, i.e., we have Eid = Eid(θ) and Eapp = Eapp(θ). This usually implies that the
optimal input signal will be a function of something which is unknown prior to the
experiment.

In our FIR example, Eid is independent of θ , since it is a linearly parameterized
model structure (unlike, e.g., ARX or ARMAX structures, where the covariance
does depend on θ ). For the frequency estimation problem, Eapp is also independent
of θ . However, if we were interested instead in estimating the squared magnitude
of the frequency function at a given frequency, |G(e jω)|2, then a Taylor expansion
shows that Eapp is approximately

Eapp(θ) =

{
θ̄ : (|G(e jω , θ̄)|2−|G(e jω ,θ)|2)2 ≤ 1

γ

}
≈
{

θ̄ : (θ̄ −θ)T
Γ (e jω)|G(e jω ,θ)|2Γ

∗(e jω)(θ̄ −θ)≤ 1
4γ

}
where the dependence on θ through |G(e jω ,θ)|2 is clear.

The fact that the optimal input signal is a function of the true plant is not neces-
sarily a problem if we already had some prior information, say from a previous ex-
periment, and our goal is to design a new experiment to improve an existing model.
In this case, we can simply replace in the formulation (6) Eid and Eapp by Eid(θ̂)

and Eapp(θ̂), respectively, where θ̂ is a basic estimate of the plant; the input signal
obtained in this way is called a locally optimal input signal design [13].

However, there are situations where we do not have enough reliable prior infor-
mation to design our input signal based on a previous estimate of the plant. In the
following subsections we describe two approaches to overcome this difficulty.
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4.1 Robust designs

Even in the absence of a preliminary estimate of the plant, we might have some
basic knowledge about its parameters. For example, from physical considerations it
is sometimes possible to infer the order of magnitude of the dominant time constant,
the static gain, etc. If this is the case, we can assume that we know a priori a set Θ

such that θ ∈ Θ , and reformulate the optimal input signal design problem (6) to
account for this information. One possibility is to consider the following robust
version of (6):

min
uN

V (uN)

s.t. Eid(θ)⊆ Eapp(θ), for all θ ∈Θ

(31)

This problem corresponds to a robust convex program, which, save for a few ex-
ceptions, cannot be solved exactly in a computationally tractable way [7]. Here we
present a simple approximate method to solve (31), based on a probabilistic re-
laxation technique known as the scenario approach [10]. For details, the reader is
referred to [35]. The basic idea is to replace (31) by

min
uN

V (uN)

s.t. Eid(θi)⊆ Eapp(θi), i = 1, . . . ,m
(32)

where θ1, . . . ,θm are independent random samples from a distribution Pθ in Θ . In
[11] it was shown that if (32) is formulated in terms of d decision variables and m is
chosen such that (

m
d

)
(1− ε)m−d < δ

for some constants δ ,ε > 0, then the solution of (32) will, with probability greater
than 1− δ , satisfy ‘most’ of the constraints in (31). More precisely, Pθ ({θ ∈Θ :
Eid(θ)* Eapp(θ)})< ε holds with probability 1−δ .

In Corollary 1 in [10], the following more explicit (but conservative) expression
for m was proposed: m ≥ (2/ε) ln(1/δ ) + 2d + (2d/ε) ln(2/ε). For example, for
d = 30, ε = 0.01 and δ = 10−10, m should be at least 7864, which gives a tractable
semidefinite program (solvable within 10 minutes on a computer with Intel Core 2
Duo CPU of 2.53 GHZ and a standard SDP solver).”

4.2 Adaptive and sequential designs

The idea of designing an experiment based on a previous estimate, and then re-
designing the experiment from the previous one can be carried out even further, to
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Fig. 1 Adaptive input signal
design.

arrive at the concept of adaptive input signal design. In this approach, a recursive
estimator is employed to obtain a new estimate of the plant at each time instant, and
the recursive estimate is then used to simultaneously redesign the input sequence.
Figure 1 presents a block diagram of the adaptive technique.

As explained in [16], adaptive input signal design can achieve optimal perfor-
mance (i.e., the same performance as if the experiment were designed based on
the knowledge of the true system) under mild conditions, even though the conver-
gence proofs are difficult and beyond the scope of the present tutorial. The interested
reader is referred to [16, 17] for details, in particular the latter reference contains a
convergence proof for adaptive signal design for ARX models.

5 Added value of optimal input signal design

In the previous sections we have focused on the formulation of applications-oriented
optimal input signal design problems and how to solve the associated optimization
problems. An obvious question is how much that can be gained by optimal input
signal design. The answer to this question is clearly problem dependent, and also
depends on what one compares with. The reduction in experiment time in the two
case studies (a process control application and a mechanical system) presented in
[5] was roughly a factor 4 as compared to a Pseudo-Random Binary Sequence. The
paper [12] presents results from re-tuning of an MPC controller of a process having
34 inputs and 90 outputs at one of the world’s largest refineries, the Hovensa refinery
in Virgin Islands, United States. Partially through the use of optimal experiment
design, the total modeling time was reduced by 90%.

By solving the optimal applications-oriented input signal design problem for dif-
ferent model complexities and different performance specifications it is possible to
characterize how the minimal experimental cost depends on these quantities. This
cost of complexity quantification, as it has become known, may provide valuable
information for trading off performance in the application versus experimental ef-
fort in the identification problem. In Section 5.1 we discuss this for our standing
example.

It is fairly obvious that optimal input signal design helps make system properties
of importance easy to detect in the measured signals. However, a less obvious mech-
anism is that the optimal input signal tries to avoid to excite system behaviours that
are inessential for the application. Thus it hides properties which are not important
to the user. This dual aspect of the input signal has some very pleasant consequences,
e.g.

1. It keeps the cost of the experiment at a reasonable level for models of high order.
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2. It sometimes allows for consistent estimation of the properties of interest, even
in the presence of unmodelled dynamics.

We will discuss this further in Section 5.2.

5.1 Cost of complexity

By focusing on specific properties of a given system, it is possible to reduce the
identification effort, measured in terms of the input signal energy required to esti-
mate the desired property within a given accuracy.

Example 4 (Example 3 cont’d). Suppose that (8) is modified to

Eapp =

{
θ̄ : (θ̄ −θ)T

Γ (e jω)Γ ∗(e jω)(θ̄ −θ)≤ 1
γ
, ∀ω ∈ [0,ωB]

}
, (33)

i.e. it is required that the accuracy of the frequency response is γ over the frequency
range [0,ωB], where 0 < ωB ≤ π . Then, following [33], it can be shown that the
minimum input signal energy required (for large model orders n) is approximately

nλγωB (34)

where λ is the variance of the noise et and 1/γ is the maximum allowed variance of
the frequency function estimate in the range [0,ωB].

According to (34), the required input signal energy increases in proportion to the
model order n. However, this cost can be kept low by focusing on a more specific
frequency region, i.e., by reducing ωB. This observation reenforces the statement
that input signal design can hide those properties which are unimportant, thus pro-
viding an energy efficient experiment.

As a comparison, it can be shown, see [33] for details, that using a PRBS (Pseudo
Random Binary Sequence) as input signal requires the energy nλγπ regardless of
the bandwidth ωB to ensure that the parameter estimate ends up in (33). Thus, for
large model orders n, the reduction in required input energy through the use of
optimal input signal design can be significant for small to moderate bandwidths ωB,
as compared to PRBS excitation.

5.2 Consistent estimation with unmodelled dynamics

A simple example of the phenomenon that sometimes optimal input signal design
allows the use of restricted models is given by the static gain estimation problem
studied in the examples of this chapter.

Example 5 (Example 4 cont’d). In Example 3 we saw that a constant input signal is
optimal for the problem of estimating the static gain. However, this particular input
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signal has the additional property that it still allows for consistent estimation of the
static gain if we use the following simple static model: yt = Kut . The reason lies in
the fact that a constant input signal completely hides all the other properties of the
system by making them unidentifiable, This since, after the transient has died out,
the system behaves as

yt =

(
n

∑
k=1

θk

)
ut + et

when ut = u (constant).

A perhaps more interesting example is given in [25], where it has been shown
that a nonminimum phase zero of a system G (of arbitrary order) at z = zo can be
consistently estimated with a model of the form yt = b1ut−1 + b2ut−2 by using an
input signal

ut =
1

1− z−1
o

rt

where rt is zero mean white noise. This input signal depends on the property of
interest, but it can be implemented using the adaptive scheme of Section 4.2 [31].

6 Concluding remarks

We have in this chapter provided the basics of applications-oriented experiment
design. There exists a wide range of extensions. By viewing the input signal as a
stationary signal with a continuous spectral density Φu(e jµ), the spectral density
takes the place of |U(e jµk)|2 in the formulation above and the discrete-time Fourier
transform (DTFT) is used instead of the DFT. An input signal with the desired spec-
tral density can be generated by filtering white noise through the spectral factor of
Φu(z). The Kalman-Yakubovich-Popov lemma [36, 30] can be used to replace the
positivity condition on the input spectrum by a linear matrix inequality. This al-
lows a wide range of model structures to be used, e.g. ARX, ARMAX, output-error
and Box-Jenkins models. We refer to [22] for details. Also closed loop experiment
design can be handled in this way [20] and there is emerging work on applications-
oriented experiment design for non-linear systems [21].
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25. Mårtensson, J.: Geometric analysis of stochastic model errors in system identification. Doc-
toral thesis, KTH, Stockholm, Sweden (2007)



A Tutorial on Applications-Oriented Optimal Experiment Design 15
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