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Abstract: In this contribution we show that under certain conditions it is possible to estimate
a non-minimum phase zero consistently using a very simple 2 parameter finite impulse response
model, for arbitrarily complex finite dimensional stable linear time invariant systems.

1. INTRODUCTION

How to cope with system complexity is a key issue in
system identification. A model is always an idealization
of the real world, yet the purpose of modeling is to
capture characteristics of the real system behaviour that
are important for the application at hand, despite that
the complete system behavior cannot be modelled. That
meaningful modeling should be based on the intended
model use has long been recognized, see for example
[Wahlberg and Ljung, 1986, Gevers and Ljung, 1986,
Ljung, 1992]. This issue was very much brought into focus
during the efforts, initiated in the early 1990s, to address
the so called identification for control problem [Gevers,
1991, Schrama, 1992, Goodwin et al., 1992, Gevers, 1993,
Bayard et al., 1992, Jacobsen, 1994, Zang et al., 1995, Van
den Hof and Schrama, 1995, de Callafon and Van den Hof,
1997, Böling and Mäkilä, 1998, Goodwin, 1999, Rivera and
Jun, 2000, Malan et al., 2001, Eker and Nikolaou, 2002].

A key outcome here was the importance of the experiment
design 1 and this lead to iterative approaches trying to
achieve experimental conditions such that the bias error
was suitably distributed over frequencies to suit control
applications.

However, also computational methods for optimal exper-
iment design were revisited and extended [Lindqvist and
Hjalmarsson, 2000, 2001, Hildebrand and Gevers, 2003,
Jansson and Hjalmarsson, 2004, 2005].

In [Barenthin et al., 2005] it is illustrated that optimal
input design may result in significant savings in experimen-
tal efforts in control applications. Through some simple
examples, it was advocated in [Hjalmarsson, 2005] that
it is possible to combat the curse of complexity, i.e. that
the model uncertainty grows with the system complexity
so that for highly complex systems the model becomes
virtually useless, by careful experiment design and that
this also allows simple models to be used (as long as only
a limited amount of system properties are to be extracted
from the measurements). The cost of an experiment vs the
amount of information to be extracted has been formalized
in [Rojas et al., 2008a,b] for frequency function estimation.
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1 This, of course, was well known earlier on also but during this time
its importance became very palpable.

Following up on [Hjalmarsson, 2005], the dual role of a
“good” input as 1) an enhancer of system properties of
interest, and 2) as an attenuator of properties of little or
no interest was formalized in [Hjalmarsson et al., 2006]
and further developed in Mårtensson [2007]. In particular
it was shown that, under certain conditions, an input that
is designed to be optimal for a scalar cost function and for
a full order model, results in experimental data for which
also reduced order models can be used to consistently
identify the property of interest.

The special case of identification of non-minimum phase
system zeros had previously been considered in [Jansson,
2004, Mårtensson et al., 2005] where it was shown that the
input

ut = z−1o ut−1 + rt−1

where zo is the NMP-zero of interest and {rt} is zero mean
white noise, allows zo to be consistently identified using
a two parameter FIR model. Even though conceptually
interesting, the catch of this result from a practical point
of view is, of course, that the input depends on the zero to
be identified. Hence, even though it is shown in [Jansson,
2004] that the choice of the pole of the input spectrum
is not so critical for the accuracy of the estimate, the
practical applicability of the result is limited. It is common
that an optimal experiment design depends on the true
system and there are two main approaches to circumvent
this problem: 1) robust input designs where the design
takes into account that the true system is uncertain a
priori Rojas [2008], and 2) adaptive, or sequential, designs
where the design is successively updated as new data is
collected from the system [Lindqvist and Hjalmarsson,
2002, Gerencsér and Hjalmarsson, 2005]. Recently, it has
been shown [Gerencsér et al., 2007, 2009] that when the
true system is in the model set and when an ARX model is
used, adaptive input design achieves asymptotically (in the
sample size) the same accuracy as a non-adaptive design
where the true system is known. See also the recent survey
[Pronzato, 2008].

In this contribution we re-visit the zero estimation problem
and propose an adaptive approach. We consider stable
causal discrete-time linear time-invariant systems with real
valued zeros outside the unit circle, subject to stationary
stochastic disturbances. We show that it is possible to
estimate the right-most of these zeros consistently using
a simple two parameter FIR model, if the input can be
manipulated. The main contribution is the convergence



analysis of this algorithm. We remark that existing conver-
gence results of recursive identification/adaptive control
algorithms in the case of severe under-modeling, which
is the case in this contribution, are very limited in the
literature.

2. PROBLEM DEFINITION

Consider the system where

yt = Go(q)ut + vot , (1)

where Go(q) is a stable rational transfer function, where
ut and yt represent the measured input and output,
respectively, where vot = Ho(q)e

o
t for some stable and

inversely stable rational transfer function Ho(q) and with
{eo} being a sequence of independent (but not necessarily
identically distributed) random variables of zero mean,
variance �o and bounded moments of every order.

The system Go has a real-valued NMP-zero at an unknown
location zo which we would like to estimate using the very
simple model

yt = 'Tt � (2)

where 't = [ut−1 ut−2]T .

In [Mårtensson, 2007] it is shown that if the input is chosen
as

ut =
c

1− z−1o q−1
rt

where rt is zero mean white noise with unit variance, then
prediction error identification using the model (2) will, as
the sample size grows, converge to a model which has zo as
zero! We will call this signal a “zo-consistent input”. Notice
that for quite general model structures, when the true
system is in the model set, this input is actually optimal
for estimating zo [Mårtensson et al., 2005].

A simple proof when the system itself is of FIR type, but
possibly subject to colored noise, and is operating in open
loop, is as follows. Let the true system be described by

yt = '̃Tt �
o + vot

where �o ∈ ℝno , vt = Ho(q)eot and '̃t = [ut−1 . . . ut−no ].
Extend � to

�e =

[
�

0(no−2)×1

]
∈ ℝno

Then, assuming open loop operation, the normal equations
when the sample size N →∞ can be written

E't'̃
T
t (�o − �e) = 0 (3)

Now with Γ(z) =
[
z−1 . . . z−no

]
, ΓT (zo)�

o = 0 defines a
zero zo of the system. The objective is now to show that the
limit model should have the same zero, i.e. ΓT (zo)�

e = 0,
i.e. that we have the relationship

0 = ΓT (zo)(�
o − �e)

zo zero of the system

}
⇒ zo zero of the model (4)

Now the first row in (3) is given by

[ru(0) ru(1) . . . ru(no − 1)] (�o − �e) = 0 (5)

and, hence, if we choose the input such that its correlation
function satisfies

ru(k) = c ⋅ z−ko , k = 0, 1, . . . , no (6)

for some arbitrary c > 0, then (5) can be written

c zo ΓT (zo) (�o − �e) = 0

Thus an input with correlation function (6) will, by (4),
imply that zo is a zero of the limit model.

Now, unfortunately, zo is the quantity to be estimated and
thus the choice (6) is not possible. However, suppose that
we have an initial guess (or estimate) ẑo of the NMP-
zero location zo. Following [Gerencsér and Hjalmarsson,
2005, Gerencsér et al., 2007, 2009], a way to cicumvent the
problem would then be to use an adaptive (or sequential)
approach where recursive identification is combined with a
time-varying input filter in which, referring to the certainty
equivalence principle, the unknown zero zo is replaced by
the latest available estimate of this zero.

3. THE ALGORITHM

The algorithm we will analyse is a very simple modification
of the RLS algorithm for the two parameter model (2),
together with the adaptive input

ut = �t−1 ut−1 +
√

1− �2t−1rt−1 (7)

where �t will depend on the parameter estimate, and
{rt} is a sequence of independent (but not necessarily
identically distributed) random variables of zero mean,
unit variance and bounded moments of every order, which
is independent of {eot}. The motivation for generating
the input as in (7) is that should �t−1 happen to be
equal to z−1o , then, according to the result in the previous
section, the RLS-estimate for the model (2) corresponds to
a consistent estimate of zo. We are thus trying to use the
input to bootstrap the parameter estimate to the desired
value. The objective of the next section is to analyse when
this may work but first let us present the details of the
algorithm.

The RLS-algorithm for the model (2) is given by

�̂(t) = �̂(t− 1) +
1

t
R−1t 't(yt − ŷt) (8)

Rt = Rt−1 +
1

t
('t'

T
t −Rt−1)

Note that, if �t = � in (7), then Rt will converge to

R(�) :=
[
1 �
� 1

]
and based on this we suggest to replace Rt in (8) by
R(�t−1), resulting in the algorithm

�̂(t) = �̂(t− 1) +
1

t
R−1(�t−1)'t[yt − ŷt]

Notice that this algorithm is extremely simple; it can be
written as

�̂1(t) = �̂1(t− 1) +
1

t(1− �2t−1)
[ut−1 − �t−1ut−2][yt − ŷt]

�̂2(t) = �̂2(t− 1) +
1

t(1− �2t−1)
[ut−2 − �t−1ut−1][yt − ŷt]

ŷt = �̂1(t− 1)ut−1 + �̂2(t− 1)ut−2
The zero for this simple model is given by

ẑt = − �̂2(t)

�̂1(t)

and we will thus use

�t =
1

ẑt
= − �̂1(t)

�̂2(t)

in (7).

Summarizing, the proposed algorithm is given by



�̂(t) = �̂(t− 1) +
1

t
R−1(�t−1)'(t)[yt − ŷt] (9)

ut = − �̂1(t)

�̂2(t)
ut−1 +

√
1− �̂21(t)

�̂22(t)
rt−1 (10)

Notice that the algorithm performs a division by �̂22(t). In
order to avoid a possible division by zero, a projection
mechanism, such as the one described in (17), can be
applied. Another reason for using such a technique is to
ensure convergence, as explained in the next section.

4. CONVERGENCE ANALYSIS

We will now provide a formal convergence analysis of (9)–
(10) when the true system is given by (1), where Go is
a stable rational transfer function with exactly one pure
time delay, i.e.

Go(q) =
∞∑
k=1

gk q
−k, g1 ∕= 0

and with at least one real NMP zero, and where Ho is
stable. We will employ the ODE analysis in [Ljung, 1977]
so we begin by considering the “frozen” system, i.e. the

system when �̂(t) = � and �t = � are fixed. This system is
given by

ut(�) = −�ut−1(�) +
√

1− �2rt−1
yt(�) = Go(q)ut(�) + et

't(�) =

[
ut−1(�)
ut−2(�)

]
ŷt(�, �) = 'Tt (�)�

� = �(�) := −�1
�2

The associated ODE is given by

�̇ = f(�, �(�)) (11)

where

f(�, �) = R−1(�)E ['t(�)(yt(�)− ŷt(�, �))] (12)

Notice that since {eot} is independent of {rt}, and since

E [ut(�)ut−k(�)] = �∣k∣,

it holds that

E [ut−l(�)yt(�)] = E [ut−l(�)Go(q)ut(�)]

=

∞∑
k=1

gkE [ut−l(�)ut−k(�)]

=

∞∑
k=1

gk�
∣k−l∣

and hence

R−1(�)E ['(t, �)y(t, �)]

=
1

1− �2
[

1 −�
−� 1

]
⎡⎢⎢⎢⎢⎣
g1 +

∞∑
k=2

�k−1gk

�g1 +

∞∑
k=2

�k−2gk

⎤⎥⎥⎥⎥⎦
=

1

1− �2

⎡⎢⎣ (1− �2)g1

−
∞∑
k=2

�kgk +

∞∑
k=2

�k−2gk

⎤⎥⎦
=

⎡⎣ g1

�−2
∞∑
k=2

�kgk

⎤⎦
=

[
g1

�−2Go(�
−1)− g1�−1

]
(13)

Inserting (13) and

R−1(�)E ['t(�) ŷt(�, �)] = �

in (12) gives

f(�, �) =

[
g1 − �1

�−2Go(�
−1)− g1�−1 − �2

]
so that

f(�, �(�)) =

⎡⎣ g1 − �1(
�1
�2

)−2
Go

(
− �2
�1

)
+
�2
�1

(g1 − �1)

⎤⎦
Let us now introduce the change of variables z = −�2/�1,
i.e. we use the zero as one of the variables. We have

ż = − �̇2
�1

+
�2
�21
�̇1

= −z�̇1 + �̇2
�1

= −z(g1 − �1) + z2Go(z)− z(g1 − �1)

�1

= −z
2Go(z)

�1
Thus (11) corresponds to the following ODE

�̇1 = g1 − �1 (14)

ż = −z
2Go(z)

�1
(15)

To analyze the stability of this ODE, notice that (14) is
globally asymptotically stable at �1 = g1, and for (15) we
can define the function

V (z) :=
1

2
(z − zo)2

where zo is a real NMP zero ofGo. Notice that V is positive
definite (i.e., V (z) ≥ 0 for all z ∈ ℝ, and V (z) = 0 if and
only if z = zo), and

V̇ (z) = −z
2Go(z)

�1
(z − zo) (16)

For large t, we have that �1 has the same sign as g1. From
(16) and the facts that limz→+∞ zG(z) = g1 and G(z) only

changes sign at its real zeros, we see that V̇ < 0 if and only
if there is an even number of (or no) real zeros greater than
zo. This is the condition for the local stability of zo, whose
domain of attraction (in case it is stable) is the interval
[a, b], where a and b are the zeros of G immediately to the
left and right of zo, respectively.



We can now refer to Corollary 1 in [Ljung, 1977] (with
the set of assumptions B from that paper) to conclude
that for the algorithm (9)–(10) equipped with a projection
mechanism which restricts the trajectory of zt to lie in a
closed set Dz ⊂ (−∞,−1)∪ (1,∞) which is strictly inside
the domain of attraction of a given real zero z0, and the

trajectory of �̂1 to lie in a compact set D�1 , it holds that

�̂1(t)→ �o1 w.p.1

ẑ(t)→ zo w.p.1

or that the estimation sequence has a cluster point on the
boundary of the projection area. The derivation parallells
the proof of Lemma 7.A.1 in [Ljung and Söderström, 1983].

As an example of such a projection mechanism, we can
replace (9) by

�̂(t) =

{
�̂(t− 1) +

1

t
R−1(�t−1)'(t)[yt − ŷt]

}
D

(17)

where

{[
�1
�2

]}
D

:=

⎧⎨⎩
[
�1
�2

]
, if �1 ∈ D�1 and − �2/�1 ∈ Dz[

�o1
�o2

]
, otherwise

with �o1 and �o2 are such that �o1 and −�o2/�o1 lie in the
interior of D�1 and Dz, respectively. See [Ljung and
Söderström, 1983] for more details.

5. NUMERICAL EXAMPLE

In this section we illustrate the use of the algorithm
presented in Section 3 with a simple example, which
exhibits the performance of the algorithm compared to
the use of the zo-consistent input for the estimation of the
NMP zero (assuming that the true location of this zero is
known) and the use of a full order model.

Consider the system described by

yt = (q−1 − 3q−2)ut + eot (18)

where {eot} is Gaussian white noise of variance 0.01. Notice
that the system has exactly one NMP zero at zo = 3.

In order to initialize the algorithm, the first 20 data
samples are used to estimate a second order FIR model via
least squares, with a white noise input signal of variance
1. As projection mechanism, we have considered (17) with
D�1 = ℝ, Dz = (1.001,∞) and [�o1, �

o
2]T = [0.5,−0.6]T .

The results of a Monte Carlo simulation consisting of 100
experiments are shown in Figure 1, where the normalized
(i.e., multiplied by t) variance of the estimation error of
four algorithms for the estimation of the NMP zero of
system (20) are shown. For this system, we notice from
the figure that the RLS bootstrapped algorithm gives
asymptotically the same performance as with the optimal
input.

Consider now a more complex system

yt =
(q − 3)(q − 0.1)

q2(q − 0.5)
ut + eot (19)

The results of 100 experiments are shown in Figure 2. For
these 100 realizations, the four algorithms have actually
converged to the true NMP zero, zo = 3. From this graph
it can be seen that the algorithm of Section 3 gives very
good performance, even when compared with the use of
the zo-consistent input for zero estimation. The fourth
method, consisting in estimating the NMP zero from a full
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Fig. 1. Normalized variance of the estimation error for
different algorithms for the estimation of NMP zeros
for system (18): Recursive Least Squares (RLS) with
(bootstrapped) zo-consistent input derived from the
estimated zero; the simplified algorithm of Section 3;
and RLS combined with the true zo-consistent input.
As shown, the asymptotic variances of the RLS algo-
rithms are almost indistinguishable.
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Fig. 2. Normalized variance of the estimation error for dif-
ferent algorithms for the estimation of NMP zeros for
system (19): RLS with (bootstrapped) zo-consistent
input derived from the estimated zero; the simplified
algorithm of Section 3; RLS combined with the true
zo-consistent input; and the estimated zero from a full
order model obtained by recursive PEM. As shown,
the asymptotic variances of RLS and the simplified
algorithm with the bootstrapped input seem to be
the same.

order model, gives much better performance than the other
procedures. This is due to the presence of undermodelling
in the model used by the other methods.

Finally, consider an even more complicated system:

yt =
(q − 3)(q − 0.1)(q − 0.2)(q + 0.3)

q4(q − 0.5)
ut +

q

q − 0.8
eot

(20)

The variance of the four algorithms is presented in Fig-
ure 3, and a typical realization of the simplified algorithm
with a bootstrapped input for this case is shown in Fig-
ure 4. As can be seen from this figure, the discrepancy
in performance between using a full order model and a
second order FIR model is much larger for this system
than for the previous ones, this is due to the presence of
heavy undermodelling.

It is important to remark that, even though in the pres-
ence of undermodelling, the proposed algorithm does not
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Fig. 3. Normalized variance of the estimation error for dif-
ferent algorithms for the estimation of NMP zeros for
system (20): RLS with (bootstrapped) zo-consistent
input derived from the estimated zero; the simplified
algorithm of Section 3; RLS combined with the true
zo-consistent input; and the estimated zero from a full
order model obtained by recursive PEM. As shown,
the asymptotic variances of RLS and the simplified
algorithm with the bootstrapped input seem to be
the same.
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Fig. 4. Typical realization of the algorithm of Section 3
applied to system (20): solid line. True location of the
zero: dashed line.

perform as well as when a full model is available, it does
provide a consistent estimate. We believe this is a remark-
able practical observation, since in real world applications
we seldom have a model including exactly all the dynamics
of the real plant, but even in this situation we can provide a
consistent estimation of a relevant property of the system.

6. CONCLUSIONS

We have in this contribution presented a very simple
algorithm for estimating a real NMP-zero of a stable
rational LTI system of arbitrary order subject to white
noise disturbances. The algorithm is accompanied by a
convergence proof which in particular shows that if a lower
bound on the magnitude of the real NMP-zero furthest
away from the origin is known, then the algorithm can be
initialized so that it will converge to this zero.

The convergence rate for the algorithm still has to be
derived. However, it is clear from the simulation example
that there is a penalty in the accuracy for the adaptive
algorithm as compared with the case when a full order
model is used. Since it has been shown in Gerencsér et al.
[2007, 2009] that asymptotically in the sample size there
is no such penalty when the true system is in the model

set, the size of the performance degradation depends on
the amount of undermodeling.

Finally, we remark that we were quite surprised by the ease
with which it was possible to derive a convergence result
for our adaptive algorithm – despite severe model/system
mismatch; this especially in light of the limited results
that exists under such conditions in adaptive control. It
is interesting to examine the underlying reasons for this.
Much of the contributions to adaptive control, especially
works prior to the mid 1980s, employ the certainty equiva-
lence principle in the control design, i.e. the latest available
parameter estimate is used to compute the desired con-
troller. Also in this contribution we employ the certainty
equivalence principle, but instead of using it directly for
the application (as in adaptive control) we use it when
designing an experiment that is optimal from an identifi-
cation perspective with respect to the end application (in
our case the estimation of NMP zeros). We believe that
the properties of our algorithm are very much tied to this
objective.

As already pointed out in the introduction an optimal
experiment has the dual objectives of enhancing system
properties of interest and “hiding” system properties that
are of little or no interest. We believe that both these
properties facilitate the use of adaptive techniques and
that these properties are what allow us to “get away” with
a simple two parameter model for the problem of NMP-
zero estimation.

Comparing with adaptive control, the approach can be
seen as the other end of the extreme: In (certainty equiva-
lence) adaptive control one immediately tries to optimize
the control objective (at the expense of the identification
accuracy). Here we instead put the identification at the
forefront at the cost of the application. When the ap-
plication is control, dual control is the optimal balance
between these two objectives, but the results we have
obtained in this contribution point to that a shift towards
identification as the primary objective also in adaptive
control may provide valuable robustness. This is uncharted
territory that awaits exploration.
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