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Abstract: A precursor to any advanced control solution is the step of obtaining an accurate
model of the process. Suitable models can be obtained from phenomenological reasoning,
analysis of plant data or a combination of both. Here, we will focus on the problem
of estimating (or calibrating) models from plant data. A key goal is to achieve robust
identification. By robust we mean that small errors in the hypotheses should lead to small
errors in the estimated models. We argue that, in some circumstances, it is essential that
special precautions be taken to ensure that robustness is preserved. We present several
practical case studies to illustrate the results. Copyright ©2007 IFAC.
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1. INTRODUCTION

The word robust has, in recent years become inextrica-
bly linked to advanced control. This has been an im-
portant step with significant practical consequences.
However, by way of contrast, little has been explic-
itly written about robust identification, although the
idea is implicit in much of the previous literature
(Ljung, 1999). Nonetheless, robustness issues play a
central role in successful identification experiments.

With the above as background the current paper is
concerned with robust identification of process models
from plant data.

One way of thinking about robustness is that small
changes in the working hypotheses should lead to
small changes in the end result. This may seem rather
obvious, but surprisingly, robustness issues are some-
times overlooked. For example, we know of an in-
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dustrial case study where a 40*" order non-minimum
phase model was fitted to a particular plant. It sub-
sequently turned out that a more robust procedure
showed that a much better description was provided
by a simple integrator plus time delay.

Here, we will suggest various strategies for robusti-
fying solutions. Often, this amounts to detuning the
algorithm such that it is not overly sensitive to the hy-
potheses. Inevitably a price is paid in terms of nominal
performance. However, this is often a relatively small
price to pay for robustness.

The specific problems that we will study include

selecting model class,
sampling,

experiment design, and
closed loop identification.

In each case we will show that there exists a poten-
tial robustness problem. We will then suggest simple
methods which can be used to improve robustness.



2. MOTIVATING PRACTICAL CASE STUDY

Before addressing the various technical issues we will
briefly review a real world system identification study
which shows some of the main difficulties encoun-
tered in practical identification studies. This system
will highlight many of the issues that we will address
in more detail in the sequel. The specific system is a
“nutating grinding mill”.

The identification experiments were tested on a full
nonlinear simulation model since the real system was
under development.

Grinding mills used in mineral processing (Napier-
Munn et al., 1996) produce material of an appropriate
size to either (a) enable downstream processes to
liberate the material of interest, or (b) produce finished
products. Here we focus on a new mill design called
a Hicom nutating grinding mill (Hoyer and Boyes,
1990).

The available control system variables (see Figure 1)
are:

Mill feed rate.

Mill speed.

Classifier rotor speed.

System air.

Secondary air rate to classifier.

Dilution air rate to mill discharge.

Grinding media (periodic, manual addition).

The process variables are

e Product specification (desired percentage of ma-
terial passing a set product size).

o Circulating load ratio (flow rate of product di-
vided by flow rate of recycled material).

e Grinding efficiency (Mill power divided by prod-

uct rate).
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Fig. 1. Hicom Mill configuration, showing measured
inputs and outputs.

The final control system needs to respect many con-
straints. Hence, a constrained Model Predictive Con-
trol law will be used. Also, the system should not be
operated in open loop. Hence the system identifica-
tion will be carried out using closed loop data and a
constrained control law (see later sections where we
discuss closed loop identification and virtual closed
loops).

The final control system needs to incorporate self-
learning capabilities, as there is limited time for com-
missioning of the control system during installation,
and the mill operators are assumed to have limited
technical ability. Therefore it is necessary to utilize
closed-loop identification schemes (i.e. those that can
run with a system under feedback control) to deter-
mine a useful model of the mill circuit. Small exci-
tation signals (sine waves) are injected into the set-
points. Note that the system is very nonlinear and a
series of local linear models are required at different
operating points. Closed loop operation is again help-
ful in defining and maintaining these points.

The overall time constant of the grinding operation
depends on the residence time of the mill, which is
long for low rates of material breakage. Thus manual
determination of the residence time (via the dynamic
response of the circulating load ratio) is needed during
commissioning.

Once this is determined, the closed loop identification
test duration is chosen to be a multiple of this. The
lowest frequency sinewave is chosen to have a fre-
quency less than the circuit bandwidth. For example,
the maximum residence time for the simulated model
has been determined to be around 60 seconds, giving
a test duration of 1200 seconds (20 minutes).

We propose to use direct identification (see later sec-
tion). We first obtain the empirical transfer function
estimate using frequency domain analysis. Next, we
fit parameterized models to each component of the
frequency response. Say we have p process variables
(Y), m manipulated variables (U) and s sets of data at
a given frequency, then the input-output model can be
with as

Yi1 Yi2 -0 Yis
Y11 Yi2 -+ Yis

Ypl Yp2 Yps
G11 Gi2 -+ Gim Uin Uiz -+ Uss
Gi11 Gi2 -+ Gim Uin Uz -+ Uss

(D

Gpl Gp2 Gpm Uml Um2 Ums

Note that, even though the reference signals may be
excited separately, the action of the closed loop means
that in each test all inputs will be excited.

When s = m, the components of the p x m frequency
response can be obtained by inversion and when s >
m, then one can use some form of generalized inverse.

An initial closed loop control design was based on this
model and was found to perform satisfactorily for the
non-linear simulation model.

Motivated by the above example we next turn to the
technical issues.



3. SELECTING A MODEL CLASS
3.1 The role of physics

The first issue to be addressed in a system identifica-
tion exercise is the specification of the class of models
to be fitted. Here the physics of the problem plays
a central role in achieving robustness. This does not
mean that one has to develop a large scale, distributed
parameter model. Indeed, quite to the contrary, a large
scale model may contain far too many free parameters
to be calibrated. The key thing is to be able to capture
the essential physics of the problem. We can quote
many examples, where a simple physical model would
have saved a lot of subsequent difficulties in system
identification; e.g.

(1) Inthe practical case study referred to in the intro-
duction, elementary physics would have immedi-
ately indicated that a simple model containing a
time delay plus pure integrator would be a good
starting point. (We have deliberately not given
details to avoid embarrassing those who did the
identification experiment)

(2) In another case study conducted by one of the
authors, the associated industrial partners had
spent significant effort in developing a large
thermodynamic-hydrodynamic model of the pro-
cess. Yet this model failed to explain key phe-
nomenum of interest. It took considerable time
to realize that the massive physical model did not
cover an essential part of the physics, namely a
non-smooth nonlinearity (slip stick friction in a
control valve.)

Our recommendation is therefore to always begin with
simple physical reasoning to suggest a model struc-
ture. This will typically take the form of a set of
ordinary differential equations (possibly nonlinear and
with time delays).

3.2 Which operator?

The most common operator in use for discrete time
models is the shift operator. However, this operator
can lead to robustness issues. This is because:

(1) the parameters typically lack physical signifi-
cance,

(2) the models are usually associated with nontrivial
numerical problems. (The source of these dif-
ficulties is that a near perfect model, with fast
sampling, is invariably y;+1 = y;),

(3) itis difficult to subsequently change the sampling
period once a shift operator model has been
obtained.

By way of illustration of the above difficulties, we
point to the following two continuous time second
order systems expressed in terms of the Laplace Trans-
form variable s:

1 1

)= 57025~ G o5y @
1 1

Ga(s) = (3)

2+5—0.75 (s+1.5)(s—0.5)

The corresponding discrete time models, using a Zero
Order Hold (ZOH) with A = 0.1 are given by (in
terms of the Zeta transform variable z):

0.048(z + 0.9792)
22 —1.90252 + 0.9048
0.048(z + 0.9792)
22 —1.9120z + 0.9048

It may surprise the reader that learn that these two
models exhibit very different behaviour. Indeed, (4) is
stable whilst (5) is unstable. Yet, the only difference in
this two discrete time models is a subtle (1%) change
in one of the coefficients!. However, in its original
form (the continuous time), we clearly see that the one
of the coefficients differs by 400%!

Gl(z) =

“4)

Ga(z) =

&)

More will be said about this example later.

Our recommendation is to either use continuous time
descriptions or delta operator based models. The latter
has a close connection to continuous models as we
show in section 5.

4. CHOICE OF SAMPLING STRATEGY

The next step is to choose a suitable sample period. A
simple rule of thumb is to sample as fast as possible
and certainly ten times faster than the dynamics of
interest.

One important point that is sometimes overlooked
is that sampling should always be preceded by low-
pass (anti-aliasing) filtering to avoid folding of high
frequency noise back into the bandwidth of interest.

With high speed electro-mechanical systems this fil-
tering is easily carried out with analogue filters. How-
ever, filtering is more difficult for systems with long
time constants (as are typical for chemical process
models). In the latter case, anti-alias filtering can be
performed digitally by sampling at a higher rate than
finally needed and then low pass filtering via digital
filtering techniques. (Of course, there will also be an
analogue anti-aliasing filter at the fast sampling rate)

Note that, for robustness reasons, anti-aliasing filter-
ing should be conducted well above the maximum
frequency of interest to avoid introducing phase shifts
or other contaminations in the range of interest.

5. SAMPLED DATA FOR CONTINUOUS TIME
MODELS

We have argued in section 4 that one should choose
sampling periods which are relatively small compared



to the dynamics of interest. In this case, one can read-
ily obtain a discrete time model by replacing deriva-
tives in a continuous time model by divided differ-
ences. Thus, if welet? § = q;—l, then the approximate
(derivative replacement) discrete time models corre-
sponding to (4), (5) are

[6% + 0 4 0.25]y; = uy (6)
[62 + 0 — 0.75]y; = uy (7)

We see that these models inherit the large parameter
difference seen in the continuous model. This suggest
that nominal properties will be much improved in the
delta form compared with shift operator models. For
example, it can be shown that the conditioning number
for the least squares parameter estimation goes to oo
(as A — 0) in shift form whereas it goes to 1 in
delta form (Middleton and Goodwin, 1990) (see also
Goodwin et al. (2007) regarding relative errors due to
zero dynamics.)

There has been some reluctance to use Delta domain
models because it is (incorrectly) believed that dif-
ference operation will be sensitive to noise. How-
ever, Delta models simply amount to a linear re-
parameterization and thus only affect numerical is-
sues. Indeed, the delta operator makes explicit the
dependence on differences which is implicit (but alas
hidden) in shift operator models.

A word of caution however is that simple derivative
replacement models will give a poor description if
used in the vicinity of the sampling frequency. This
is because sampling inevitably involves folding (i.e.
aliasing) of high frequency components back onto the
range (0,7/A) in the frequency domain.

For example if we assume that the continuous-time
system frequency response G(jw) goes to zero as
|w| — oo, then the corresponding discrete-time fre-
quency response converges as follows:

H JwAy
ilir}OGq(e ) =
X [(1—eb) ®)
lim E [ G(s)
A0, = sA s=ju+jEe

The impact of the folding described in (8) is illustrated
in Figure 2. This figure shows a comparison of the
Bode magnitude diagrams corresponding to a second
order system and the exact sampled-data model ob-
tained for different sampling frequencies.

The figure clearly illustrates the fact that, no matter
how fast we sample, there is always a difference (near
the folding frequency) between the continuous-time
model and the discretised models.

A consequence of the folding of high frequency dy-
namics back onto lower frequencies is that additional

3 A: sampling period.
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Fig. 2. Continuous- and discrete-time frequency re-
sponse magnitudes (vertical lines denote folding
frequency of w/A).

zero dynamics are introduced into the corresponding
sampled data model. Thus, for example (6), (7) are
more accurately described as follows (for zero order
hold input)

[6% 4+ 6 4 0.25)y, = [86 + Juy ©)
[6% 4+ 6 — 0.75]y; = [v6 + 1uy (10)

This additional zero corresponds to the asymptotic
sampling zero at z = —1 in the discrete time models
(4) and (5).

Moreover, provided one samples relatively quickly
(say ten times the transients of interest), then 3 and
v in (9) and (10) can be approximately fixed at the
asymptotic value of 0.5A (Feuer and Goodwin, 1996;
Goodwin et al., 2007).

The above ideas can be readily generalized. Indeed,
there exists a comprehensive theory describing addi-
tional sampling zeros of the type shown in (9) and
(10). Indeed, for small A, it can be shown that, for
a system of relative degree r, then (r — 1) additional
sampling zeros appear which asymptotically tend to
the roots of the Euler Frobenius polynomials (see e.g.
Astrom et al. (1984), Weller et al. (2001), Yuz (2005)).

This leads to an interesting follow up robustness ques-
tion, namely, Should we incorporate the sampling ze-
ros in our model for identification purposes?. Cer-
tainly, if one wishes to obtain small (relative) model
errors in the vicinity of the sampling frequency, then



one has no choice but to include the sampling zeros
(Yuz and Goodwin, 2007).

This is illustrated in the following example

Example 5.1. Consider a second order linear system:

Bo

s2 4+ a5 + ag

Go(s) = (11)

where the continuous-time parameters are given by
a1 = 3, a9 = 2, By = 2. System identification was
carried out assuming three different model structures:

SDRM: Simple Derivative Replacement Model. This
corresponds to the structure, where continuous-time
derivatives are simply replaced by divided differ-
ences.

MIFZ: Model Including Fixed Zero. This model con-
siders the presence of the asymptotic zeros.

MIPZ: Model Including Parameterised Zero. This
model also includes a sampling zero, whose loca-
tion has to be estimated.

The three discrete-time models can be represented in
terms of the  operator as:

__ Bty
Gs() = (12)
where:
Bo (SDRM)
Bs(v) =< Bo(1+5v) (MIFZ)  (13)
Bo + By (MIPZ)

We use a sampling period A = 7/100[s] and choose
the input uy, to be a random Gaussian sequence of unit
variance. Note that the output sequence y, = y(kA)
can be obtained by either simulating the continuous-
time system and sampling its output, or, alterna-
tively, by simulating the exact sampled-data model in
discrete-time. Also note that the data is free of any
measurement noise.

The parameters are estimated in such a way to min-
imise the equation error cost function:
N-1
2 T )2
(6%yx — ¢1,0)

k=0
(14)

1 = 1
70) = & > en(0)® = I
k=0

where:
[—0Yks —Yk, Uk]T
ok = 4§ [—6yk, —yk, (1 + %5)uk]T (15)
[=6ys, —Yk, Ouge, ug]”

and
[a1, ag, Bo]”  (SDRM)
0= 1 lo, ao, Bol" (MIFZ) (16)
[a1, o, B1, Bo]" (MIPZ)

Note that in this example we are estimating the pa-
rameters using unfiltered “equation errors”. In practice

one should not do this as it is generally extremely
non robust. The reason is that equation error models
emphasize fitting at high frequencies and are thus very
sensitive to high frequency model errors including the
issue of having the correct sampling zeros. To explain
the origin of the difficulty, consider a general transfer
function model of the form:

Ao(qil)yt = Bo(qil)ut + wy o))
2

w*

where w; is zero mean white noise with variance o

Using Parseval’s Theorem it is readily seen (Ljung,
1999) that the equation error cost function tends to

A2
J:/A|2|(GO—G)<I>U|2dw+/’A o2 dw
where ¢, G, = %, and G = % are the input

spectrum ,the “true” gystem and the model respec-
tively. Now A(g~!) is, in general, high pass. Thus,
we see that the estimator fits the error between G,
and G emphasizing high frequencies. Consequently,
if one wants to use an equation error estimator then
one should always use an appropriate filter, (g~ 1),
to focus the fit on the frequency range of interest. With
pre-filtering of y; and u; by E(q~1) the cost function
becomes

A
=[5

The filter E(g~") can thus focus the estimator in the
frequency range of interest. In the remainder of this
example we will continue to use unfiltered equation
errors so as to emphasize the importance of using the
correct sampling zeros if a model with high fidelity at
high frequency is desired.

2
2
0, dw

(18)

2 A
- G)P,|? —_
(Go— )| dw+/’ -

Table 1 shows the estimation results. Note that the
system considered is linear, thus, the exact discrete-
time parameters (exact DT) can be computed for the

given sampling period. These are also given in Table
1.

We can see that, while both models incorporating a
sampling zero (MIFZ and MIPZ) are able to recover
the continuous-time parameters, when using SDRM
the estimate ﬁAO is clearly biased (by a factor of almost
2:1).

Table 1. Parameter estimates for a linear

system
Parameters Estimates
CT|Exact DT|SDRM MIFZ MIPZ
a1 3| 2.923 |2.8804| 2.9471 |2.9229
ap| 2| 1.908 [1.9420f 1.9090 |1.9083
B1] -] 0.0305 - % = 0.03(0.0304
Bol 2| 1.908 [0.9777] 1.9090 [1.9083

The result in the previous example may be surpris-
ing since, even though the SDRM converges to the
continuous-time system as the sampling period goes



to zero, the estimate BO does not converge to the
underlying continuous-time parameter. This estimate
is asymptotically biased (Yuz, 2005; Yuz and Good-
win, 2007). Specifically, we see that (3; is incorrectly
estimated by a factor of 2 by the SDRM. This illus-
trates the impact of not considering sampling effects
on the sampled-data models used for continuous-time
system identification.

The above discussion and example suggest that one
cannot, in general, ignore the effect of folding in
sampled data models. Indeed, one should include the
sampling zero dynamics which result from the folding
of high frequency components back into the range
(0,7/A).

These ideas can also be extended to the nonlinear case
(Yuz and Goodwin, 2006). However, there is a fur-
ther robustness issue here. Specifically, the high fre-
quency components that are folded back by sampling
are likely to be ill-defined or non-stationary in prac-
tice. Hence, it seems desirable to not place too much
confidence in these folded artifacts. For example, the
asymptotic sampling zero of (0.5A¢ + 1) described in
relation to (9), (10) assumes that the input is generated
by a zero order hold and that no undermodelled poles
or zeros lie above m/A. If these assumptions do not
hold then this is clearly a source of problems (Yuz and
Goodwin, 2007).

6. LIMITED BANDWIDTH ESTIMATION

Identification procedures can be robustified to the ef-
fects of high frequency folding (including the presence
of sampling zeros and anti-aliasing filters) by simply
avoiding estimators which focus on frequencies near
the folding frequency. This can be readily achieved
in the frequency domain (for linear systems) or time
domain (for linear and/or nonlinear systems).

6.1 Restricted bandwidth estimation: The frequency
domain

One can readily perform robust Frequency Domain
Maximum Likelihood (FDML) estimation for linear
models. The core idea is to convert the data to the
frequency domain and then carry out the identification
over a limited range of frequencies. Note, however,
that one needs to carefully define the likelihood func-
tion in this case. For example, the following result
(for the scalar case, the result has been derived in
(Ljung, 1993), while the multi-variable case is con-
sidered in (McKelvey and Ljung, 1997)):

Lemma 1. Assume a given set of input-output data
{ury, = uw(kA),yr = y(kA)}, k = 0...N , is
generated by the exact discrete-time model:

yr = Gq(q, 0)ur + Hy(q, 0) vy, (19)

where vy, is Gaussian discrete-time white noise (DTWN)
sequence, v, ~ N (0,02).

The data is transformed to the frequency domain
yielding the discrete Fourier transforms U, and Y, of
the input and output sequences, respectively.

Then the maximum likelihood estimate of 6, when
considering frequency components up t0 wWmax, 1S
given by:

fasr, = argmin L(6) (20)

where L(6) is the negative logarithm of the likelihood
function of the data given 6, i.e.

L(e) = logp(Yo, R 7Yn1nax 9)
LR |Ye — Gy(e2,0)U4
2 T, ()

+log(mA; [ Hy (€2, 0) %)

where A2 = AN 02, and 1, is the index associated
Wwith Winax.

PROOF. Equation (19) can be expressed in the fre-
quency domain as:

Ve = Gy(e 0\ Uy + Hy(e2,0)V,  (21)
where Yy, Uy, and V; are scaled discrete Fourier trans-

forms (DFT) (Middleton and Goodwin, 1990; Feuer
and Goodwin, 1996), e.g.

N—-1
Y, =Y (R =AY gpe kA =2 L
k=0
(22)

Assuming that the DTWN sequence vy ~ AN(0,02),
then Vj are (asymptotically) independent* and have
a circular complex Gaussian distribution (Brillinger,
1974; Brillinger, 1981). Thus, the frequency domain
noise sequence V; has zero mean and variance \? =
AN o2. We therefore see that Y, is also complex
Gaussian and satisfies:

Yo~ N (G2, 0)Up, Xy | H (2, 0) ) (23)

The corresponding probability density function is
given by:

1
TAZ|H, (e §) 2

Yy — Gy (e, 0)U,|?
exp§ — -
N2 Hy(edwe2,0)?

p(Ye) =
(24)

If we consider the elements Y, within a limited-
bandwidth, i.e. up to some maximum frequency wyax
indexed by npax With Wpax = ws™3px < %, the
appropriate log-likelihood function is given by:

4 A simple rule is stationarity in the time domain implies indepen-
dence in the frequency domain



MNmax

L(0) = —logp(Yo, .. ., Y, |0) = —log ] p(v2)
=0

_’erax ‘sz _ Gq(eij,G‘)UAz
T N [H, (B 92

+ log(ﬂ)\ﬂHq(ej""’A, 9)|2) (25)

ooo

Remark 2. The logarithmic term must be included in
the log-likelihood function since this plays a key role
in obtaining consistent estimates of the true system.
This term can be neglected only under very special
circumstances e.g. if (Ljung, 1993):

o The noise model is assumed to be known. In this
case H, does not depend on 6 and, thus, plays no
role in the minimisation (20); or

e The frequencies wy are equidistantly distributed
over the full frequency range [0, 2F). This is
equivalent to considering the full bandwidth
case in (25), i.e. Nypmax = % (or N, because of
periodicity). This yields:

N-1
™

N D log [Hy (e, 0))
£=0

[\

N—oo

27
_ Nowo / log | H, (. 0) 2dw
0
(26)

A standard result from Complex analysis (The
Bode integral (Goodwin et al., 2001)) ensures
that the last integral is equal to zero for any
monic, stable and inversely stable transfer func-
tion H, (e, 0).

\YAYAY

Using the cost function (25) it is straightforward to
estimate the parameters. Moreover, tests, e.g. reported
in (Yuz, 2005; Yuz and Goodwin, 2007), show this to
be a robust strategy.

The above ideas can also be extended to closed loop
identification (see Pintelon and Schoukens (2005)),
and state-space multivariable systems (Agiiero et al.,
2007a).

6.2 Restricted bandwidth estimation in the time domain

Robust limited bandwidth estimation can also be car-
ried out in the time domain. A first point to note in this
context is that sampling inevitably involves a folding
of high frequency artifacts back into lower frequen-
cies. Thus, sampled data models are always subject to
robustness difficulties at frequencies near the sampling
frequency.

If one is principally interested in the plant model (as
opposed to the noise model), then there is a simple

path to obtaining a limited bandwidth model as ex-
plained in the following steps:

(1) Say we are ultimately interested in a discrete
time model that operates up to frequency /A,
then choose a sampling period much smaller than
A, say A/20.

(2) Excite the system up to frequencies well below
207 /A, say 5m/A. Note that this will not give
us information near the folding frequency nor
will it be informative about the sampling zeros.
Indeed, it will suffice to simply use a derivative
replacement model (i.e. replace derivatives by
divided differences with period A’ = A/20).

(3) Next, assuming that the model found in step 2 is
actually continuous time, construct an appropri-
ate sampled data model at the required sample
period. This means either manually adding the
appropriate zero dynamics resulting from folding
or simple use Runge-Kutta to solve the continu-
ous model at the required period. Note that this
can be done for any period greater than A.

Finally, a word of caution. Whilst step (3) will robustly
generate the correct sampling zeros (because our orig-
inal model has been fitted over the frequency range
that will be folded back) it is not advisable to ever run
control algorithms with a bandwidth that approaches
the folding frequency. This is because, at these pe-
riods, there can exist significant control robustness
issues. This rules out, for example, controllers such
as minimum variance control which, inter alia, yield a
closed loop bandwidth near the sampling frequency.

7. ROBUST EXPERIMENT DESIGN

Having decided on the class of models and a suitable
sampling strategy, then the next step is to design a
suitable robust experiment. Colleagues from industry
often tell us that the only acceptable experiment (to
them) is one performed in closed loop since this en-
sures that all safety and feedback mechanism are in
place (see also the example in Section 2). Indeed in
extreme circumstances, it is often said that the exper-
iment should not be detectable on the plant output
records (at least as far as plant operators are con-
cerned).

This goal can be given a mathematical description by
requiring that the plant output satisfy certain produc-
tion oriented constraints during the experiment. We
will argue below that this type of constraint invariably
implies that the experiment should be conducted in
closed loop.

7.1 Linear model description
For simplicity of exposition we will develop the math-

ematical support for our conclusions based on linear
single input single output models. However, one can



reasonably expect that similar qualitative conclusions
hold more generally (i.e. for nonlinear models, etc.)

Thus, consider a single input - single output linear
system of the form

S={(Gy H,)eC:
y(t) = Golg Hu(t) + Ho(g~ Hw(t)}

where C is the set of causal linear systems, ¢~ is
the unit delay operator and G,(¢™1) = ¢ 9G,(¢7 1)
(G(0) = by # 0,d € N)® and {w(t)} is zero mean
white noise sequence with variance E{w(t)?} = o2
(note that o2 is also the noise spectral density). We
take H,(g~!) to be the stable minimum phase spectral
factor, and H,(0) = 1.

27)

1

We consider Box-Jenkins models of the form G(¢ 1, 6)
Gla™ ) Hla™,0) = (g~ ) where 0 = |*].

Notice that the sub-parameter vector p refers only to

Glg™).

Under mild conditions, it is well known that when
using the Prediction Error Method (PEM) (Goodwin
and Payne, 1977, page 99), (Ljung, 1999, page 282):

VN(Ox —8,) % N(0, Pp) (28)

where the matrix Py (assumed non-singular) is given
by:

Py =02 [E{U(t,0,)(t,0,)"}] " (29

and W(t, 0) = — 2560, e(t,0) = H(q™",0) " y(t) -
G(g~, 0)u(t)]-
The covariance of the parameter Oy is usually approx-

imated as cov {é N} ~ %Pg for experiment design

(Ljung, 1999, Chapter 9) (N is the number of data
points).

7.2 Information matrix for BJ models

It is well known (Ljung, 1999) that, for BJ models, the
following is satisfied:

_ [Hola™ )™ A, (g M u(t)
(t,0,) = {Ho(q—l)—lAno(q_l)w(t)}

where
_ oG(q ', p
Ayl = L)
P=Po
_ OH(q ", n
- 2
n=no

The information matrix for the full parameter vector is
given by:

My=NP;'= %E{\Il(t,ﬁo)ql(t,ﬁo)T}

w

— R -1
5 We take Go (¢ ') = Jj"(q ).

This can also be re-written using Parseval’s Theorem
as® 7 (Ljung, 1999, page 291):
N 1
My — [ 45 } (30)

02 2r |B' D

where

A= /Gla{fcpu, B= /Glegf@uw,
D= /Ggafai, Gy =H,'A,,, Gy =H,'A,,
From (30) and utilizing standard matrix algebra we

have that the inverse of the covariance for p and 7 are
given by:

2
7;3“’ Pl = /G1G1 By — B(Puw)

2 2

7;3“’13,;1 = /GQGQJEU —Y(Prw) (31)

where

B(®yw) = BD'BT, ~4(®,,) =BTAT'B (32)

Remark 3. Notice that 3(®,,,) > Osince [ G2GL o2
(and its inverse) is a positive definite matrix. Similarly,
Y(Puw) > 0 since fGlG{{(I)u (and its inverse) is a
positive definite matrix.

\YAYAY

For future use we next obtain bounds for Pp_ L

Lemma 4. The inverse of the covariance for p (for any
experiment &) is bounded as follows: %Pp_ ey >
JG1GH [@u — “};”7;“‘2} Moreover, equality holds if
and only if there is awnon-frequency dependent matrix

I" (of appropriate dimensions) such that G ®,,, =
I'Gs.

PROOF. This is a direct consequence of the Cauchy
Schwarz inequality (see (Agiiero and Goodwin, 2006),
(Agitiero and Goodwin, 2007) for details).

ooo

Our goal in the sequel will be to compare open loop
and closed loop experiments. We will use =,; and =;
to denote open and closed loop experiments respec-
tively. We define these classes below.

Consider a general class of experiments carried out
with any linear time invariant feedback control law of
the form

6 Here, and in the sequel, we omit the limits of integration and the
integration variable. Unless, otherwise stated the limits of integra-
tion are from —7 to 7, and the integration variable is w.

7 We use the following notation: Dy =
Z:O:_oo Rey(T)e %7, and Rgy(r) = E{z(t)y(t -
7} = i f @,y el“T dw for any pair of signals z(t) and y(t).
We also use &, = O,



u(t) = Folq )r(t) = Colg y(®)  (33)
where r(t) is a reference signal. This class includes

open loop experiments where we take C,(¢~1) = 0.

Under the control law (33), the closed loop satisfies
Y(t) = GoFoSor(t) + SoHow(t)
u(t) = F,Sor(t) — CoHoSow(t)

where S,(q~!) is the sensitivity function given by
(Goodwin et al., 2001, page 125):
1
S, (g7 =
SR e R PR T

The corresponding output, input and cross spectrum
are given by

Dy = |GoFoSo|? @, + |So Ho| o,

®, = |F,S,|*®, + |CoH,S, |02,

B = —Cy H, 5002, (34)

We can then define the classes of experiments of
interest as follows:

Definition 1.

Openloop: =, = {£ € Z:C,(¢ ") =0} 35)
Closed loop: ., = {£ € Z:Co(¢ ') #0}

\YAYAY
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With the above background we can now define what
we mean by a good experiment. Specifically:

Definition 2. The class Z.; of experiments is said to
be better (not worse) than the class =,; if and only if
Vé, € By, 3E, € 2, such that 8

PrNEY > PG (Pe) > P e
(36)

\YAYAY

The above definition uses a strong notion of optimality
called Loewner optimality (Pukelsheim, 1993, chapter
4) due to the association with the ordering of symmet-
ric matrices called The Loewner partial ordering (see
e.g. (Siotani, 1967)). This definition can be extended
to define a partial ordering (for the reduced vector p)
amongst experiments in the sense that (Kiefer, 1959)

P
G=&e POy > PG 6,6 €2 (37)
where p is the vector of parameters of interest and

= is the allowable set of experiments. When strict

inequality holds in (37) we write £, & .

P
Remark 5. Notice that &, > & implies that &; is
preferable under any order preserving (isotonic) cri-
terion such as det{Py}, \naz{Ps}, trace { Py}, etc.
VAYAY

8 A > Band A > B signify A — B positive semidefinite and
positive definite respectively.

7.3 Open v/s Closed Loop

To obtain a meaningful design problem, it is necessary
to place constraints on the allowable set of experi-
ments. Based on our stated goal that the experiment
should have minimal impact on nominal production,
we require that the experiment satisfy an output power
constraint i.e. we require that

Py;/cpng (38)

Note that this requirement is heuristically related to
keeping the perceived output variations small during
the experiment.

The constant K is assumed to be strictly greater than
the minimum achievable output variance. In order to
find an optimal solution we use the scalar function
J (P, 1Y which is any isotonic (order preserving) func-
tion.

Our key conclusion is then summarized in the follow-
ing result (Agiiero and Goodwin, 2006; Agiiero and
Goodwin, 2007):

Theorem 6. For the system described in equation (27)
and provided that a BJ model is used and that the
associated minimum variance controller is different
from zero then the class of experiments =.; is better
than the class of experiments =,;. Moreover, for any
isotonic scalar design criterion, J(-) for p, the optimal
experiment is necessarily in the class Z;.

PROOF. See Appendix. oo

The above result is very strong since it shows that, if
one constrains the output power during an experiment,
then one should always perform the experiment in
closed loop (for a general class of systems as stated in
the Theorem). The proof of this Theorem is based on
the construction of a closed loop experiment which is
better than any given open loop experiment. Indeed,
the closed loop experiment need only to satisfy the

following:
/\SOHOF < /|HO|2 (39)

where S, is the closed loop sensitivity function.

Actually, we can gain a little more insight by examin-
ing this latter requirement for the closed loop experi-
ment. What this says is that the (mean square) impact
of disturbances during the (closed loop) experiment
should be less in closed loop than it would have been
had the experiment been performed in open loop. In-
deed, the more we can reduce the impact of distur-
bances on the output, then the greater “room” we make
for the output variations caused by the experimental
test signal (within the limits imposed by production
constraints). This seems heuristically reasonable.



One might actually believe by examining (39) that the
best experiment coincides with making [ |S,H,|? as
small as possible. Indeed, the controller that makes
the output variance as small as possible is commonly
known as a minimum variance controller. The design
of such a controller depends on having a detailed plant
model. However, this introduces a robustness problem
since the whole purpose of the experiment is to learn
(more) about the plant model. (More will be said on
this point later).

However, this line of reasoning is readily resolved (at
least heuristically) by utilizing ideas from traditional
control theory. Specifically we know that |.S,| can be
made small over the frequencies where the relative
model error is less than one. Hence, prior knowledge
about the system dictates the bandwidth over which
we can robustly obtain significant sensitivity reduc-
tion in experiment design. Indeed, an iterative design
procedure can be employed where one successively
fits a model (over a given bandwidth), then uses that
model to design a controller to achieve a slightly wider
bandwidth and so on. This also is related to the wind-
surfer approach to adaptive control (Anderson and
Kosut, 1991; Lee et al., 1993; Lee et al., 1995; Ko-
sut, 2000).

7.4 Design of the reference signal

The key conclusion from Section 7.3 is that, subject
to the output variations being constrained, we should
design the experiment so that it is conducted in closed
loop. We also conclude (see proof of Theorem 6 in
the Appendix) that the reference should be injected
via S, where S,S, is all pass. However, so far, we
said nothing about the reference signal perturbations
themselves. Examination of the proof of Theorem 6
shows that a good option is to use the best “open
loop” test signal in conjunction with tight feedback
control. Here again we are confronted by a robustness
issue, namely the best open loop test signal typically
depends on the nature of the system i.e. the very thing
that the experiment is aimed at learning.

We are thus lead to consider more heuristic (and prac-
tical) issues. Practitioners who carry out experiments
often report that step type test signals are good, but
often do not excite high frequencies terms adequately.
On the other hand random signals such as PRBS are
also considered good, but often have wasted energy at
high frequencies.

In the frequency domain, step type inputs have power
that decays as 1/(frequency)? (1/f?) whereas ran-
dom signals have power that is constant over fre-
quency. The above line of reasoning implies that a sig-
nal having power that lies somewhere between 1/ 2
and a constant might be a good open-loop test sig-
nal. This suggests that a test signal with power that
decays as 1/f (over a limited bandwidth) could be a
good choice. Indeed, recent research has shown that
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Fig. 3. Discretised spectrum of the robust optimal
input for the first order system.

test signals having energy that decays as 1/(f) have
remarkable robustness properties in system identifica-
tion. This claim is illustrated below for a particular
example.

As a specific illustration of the properties of (band-
limited) 1/ f noise, we refer to an illustrative first order
system having transfer function

1

Gls) = s/0+1

(40)

The optimal nominal (open loop) test signal for iden-
tification of this system is well known to be a single
sinusoid of frequency w* = 6, where 6, is the a-priori
estimate of 6.

This is an intuitively pleasing result, i.e. one places
the test signal at the (nominal) 3dB break point. How-
ever, the result reinforces the fundamental robustness
difficulty associated with nominal experiment design,
namely, the optimal (open loop) test signal depends on
the very thing that the experiment is aimed at estimat-
ing.

An alternative, robust input design strategy is to as-
sume that the a-priori distribution of § is anywhere in
a compact set ©. Then, robust experiment design may
be formulated as

&= Iggél max J(P(6),0)

(41)
where ¢ is the experimental conditions (here the test
signal), J(-) a suitable scalar function of P(6) the
parameter variance matrix.

For the one parameter problem (40), we choose © =
[Omin, Omaz) and J(P(0),0) as the relative error
P(6)/62. For 0,,,;, = 1 and 0,4, = 10.

For the above problem, the following key properties
have been established in (Rojas et al., 2007¢):

(i) Existence: There exists at least one optimal in-
put.

(i1) Uniqueness: The optimal input is unique, and 6
and 6 do not belong to the input spectrum.



(iii) Compact support: Every optimal input should
have all its energy inside [0, 0].

(iv) Finite support: The optimal input has finite sup-
port in the frequency domain, and thus can be
realised as a finite sum of sinusoids. (Recall the
test signal deployed in the motivational example
of Section 2).

Figure 3 shows the robust optimal test signal obtained
via the cost function (41).

A remarkable property (established in (Rojas et al.,
2007¢)) is that bandlimited ‘1/ f” noise, defined by the
spectrum

e g
¢11/f(w)é Inw—Inw’ welw . @)

0, otherwise

is near optimal. Here we take the frequency range as
w = # and @ = 6. In fact, it has been proven that the
performance of bandlimited ‘1/f noise is (at most) a
factor of 2:1 away from the performance of the true
robust optimal test signal.

Table 2 compares the achieved performance for differ-
ent test signals.

Note that the single sinusoid at w = 1 is the nominal
test signal if we take the nominal parameter value as
the geometric mean of 6,,,;,, and 6,4

We see from Table 2 that 1/f noise is indeed an
excellent input for robust experiment design. This is
further supported by recent research reported in (Rojas
etal.,2007a).

In practice, it is also desirable to keep the amplitude
of the test signal small. Thus, one may be interested
in generating binary signals having a (band-limited)
1/ f spectrum. Methods for designing such test signals
are described in (Rojas et al., 2007b; Agiiero et al.,
2007b).

8. ESTIMATION PROCEDURES

We have argued above that the best experiment (when
the ouput variations are constrained) is a closed loop
one. This then leads to the obvious follow up question,
namely how should we estimate the parameters from
closed loop data.

This issue has led to considerable consternation by
practitioners. Indeed, some say that closed loop iden-
tification is simply impossible. We will show below
that, in fact, closed loop identification, when carried
out properly, is no more difficult than open loop iden-
tification.

Thus, consider the closed loop shown in Figure 4.
To illustrate the ideas we assume that the process of
interest has the following linear model (extensions to
the nonlinear case are also possible):

1"
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<

Process
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40»
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Fig. 4. Closed Loop used in Identification

yr = Goug + vy
(43)

where GG, and H,, are linear transfer functions, and wy
is a sequence of independent random variables with
zero mean value, variance 012”. We also, assume that
y: and uy are jointly quasi-stationary, that the model G
for G, belongs to the family of models G(#), and that
H (the model for H,) belongs to a family of models
H(0).

vy = Howy

The equations describing the system in Figure 4 are

up = Cq ") [re — wi] (44)
Yt = Go(qil)ut + vy (45)
ve = Ho(g™ M )wy (46)

where w; is a white noise sequence.
The closed loop system is assumed to be stable.

We further assume that at least one of the following
two conditions holds:

(1) There is a delay in both the process and the
model (G,(0) = G(0) = 0) and
(2) the true controller is strictly proper (C(0) = 0).

Also, we normalize the true noise transfer function
H,(g~ 1), and the model H(g~!) by requiring that

H,(0) = H(0) =1 (47)

8.1 Review of results on direct and indirect identification
using PEM

The literature on identification offers two choices for
closed loop identification *

e Direct: Here one treats u; and y; as if they were
in open loop and estimates G directly.

e Indirect: Here the relationship between y; and
r¢ is modeled and then (G, is obtained from this
model. In the linear case, we use the model

GO 1

“1ra.o0 "t Tira.c”

and then extract an estimate of GG,,. Indeed (48)

can be simply thought as a potential model struc-

ture with some known parts (the parameters in

Yt (48)

9 There are some other alternatives in the available literature such
as joint input/output identification. However, all of them assume
perfect knowledge of the controller. Moreover, in most cases the
controller must be linear.

e



Table 2. Relative Values of Cost for the Different Input Signals

2071 —1
ggg[G M(6, du)]

Sinusoid at w = 1

7.75

Bandlimited white noise

12.09

Bandlimited ‘1/f” noise

1.43

Min-max optimal input

1.00

C) and some parts to be estimated (the parame-
ters in G7,,).

Each of the above approaches has advantages and
disadvantages. Specifically,

(1) Direct identification is impossible with open loop
unstable systems (in Box Jenkins form) since
one has no way to ensure that the unstable ini-
tial condition response remains bounded. Also,
direct identification is sensitive to being able to
accurate specification of the noise model. Indeed,
we will show below that errors in the noise model
lead to bias.

Indirect identification is, on the other hand, sen-
sitive to the fidelity of the controller C'. Thus,
errors in the controller, e.g. due to saturation, will
cause bias errors.

@

Note that indirect identification is equivalent to direct
identification of a (closed loop) model having a partic-
ular parameterization.

We take a short diversion to review known results
(Forssell and Ljung, 1999; Ljung, 1999) on identifi-
cation via PEM’s.

We assume that the system under study has input
and output y,. (The specific form of @; and its rela-
tionship to u; will be described later.) We conceptually
model the relationship between %, and y; by

Yy = Gﬂt + H’U)t (49)

where w; is notionally “white noise” and G and H
are (independently) parameterized transfer functions.
The PEM typically uses a cost function of the form
(Ljung, 1999):

1N
V= > e (50)
t=1
where €; denotes the prediction error given by:
e = H 'y, — Guy] (51)

The following results are standard for PEM identifica-
tion:

Lemma 7. The cost function V() converges, almost
surely, to

V(o) =Bl = o |

—T

T

O (w)dw (52)

PROOF. See (Forssell and Ljung, 1999; Ljung, 1999).

oono
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Lemma 8. The prediction error spectrum is given by

1~ - G*
O, =02 1+ —_ 2
=%t gp |G H| ®x {H} (53)
where * denotes complex conjugate and

G=G,—G (54)
H=H,-H (55)

_ ‘I)’z’ (I)ﬁ'w
Ox =g 8 } (56)

PROOF. See (Forssell and Ljung, 1999; Ljung, 1999)
ooo

Using the result (53) it is easy to see that if the spec-
trum P x is a positive definite matrix for all frequen-
cies, and that the true model (G, and H,) are con-
tained in the family of models (G(#) and H(6)) a con-
sistent estimate is obtained. This condition has been
called an informative experiment (Ljung, 1999; Fors-
sell and Ljung, 1999).

We also have the following result:

Lemma 9. The prediction error spectrum can be writ-
ten as:

1 a 7 — r7 r
d. =02 + THE |G+ HD g ®, @y + |H|?®T,
(57)
where G, H are as in (54), (55), and
BT =02 — By @ Dy (58)

PROOF. See (Forssell and Ljung, 1999; Ljung, 1999).
oOoo

Using (57), it can be readily seen that, when we have
an erroneous noise model, the resulting estimate of G,,
will have an asymptotic bias given by:

By = HP ;0!
where H is as in (55).

(59)

Here, we have assumed that H, and G are indepen-
dently parameterized. This, also covers the case when
a fixed noise model is used.

Using equation (59) we see that it is possible to obtain
a consistent estimate in the following two cases:

e When a sufficiently rich family of noise models
H (0) is used such that H = H,, is achievable.



e When the cross-spectrum ®,; is (near) zero.
(This is always the case with open loop data but
will generally be false for closed loop data when
a direct identification method is used).

Equation (57) also gives insight when the system
model is misspecified i.e. when there does not exist
a G in the model class such that G can be zero. In this
case, minimization of (52) can be viewed as an ap-
proximation problem where the “weighted distance”
between G and G, + H D@, ! is minimized over
the given model class.

9. VIRTUAL CLOSED LOOP IDENTIFICATION

We have seen in section 8 that both direct and indirect
closed loop identification have potential robustness
issues. In this section, we describe a procedure that
combines the best features of direct and indirect iden-
tification.

To explain the idea, consider a hypothetical controller,

C', which is linear and has the transfer function
P(g")
L(g™)

We use a fractional representation and express (60) in
the equivalent form:

Clqg") =

Clg™h =

(60)

P(g")/E(q")
L(g~1)/E(q™1)

where E(q~!) is any stable polynomial. We also write
N =E(") - L") (62)

(61)

Next we form a filtered version of the reference signal
via the following stable operations on the measured
signals u; and y;:

(63)

’ELtZUt—

We can now use the virtual input, 4y, as a simple
mechanism for choosing an identification algorithm
that lies anywhere in the range from direct to indirect.
To illustrate, we consider two extreme cases.

(1) When C = % is chosen as the true control law,

then
P!
Ut = W‘l)[yt — 14 (64)
Ut = U — Eut + Eyt (65)
Substituting (64) into (65) gives
o 1 N P [ ]+ P
Ut = E I Yt — T Eyt
(66)
P P
= _E[yt — 1 + 7Y (67)
P
= Ert (68)
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Hence, in this case, 4, is simply a filtered version
of the reference input. Thus, if we use direct
identification the system linking % to y;, we are,
in effect, using indirect identification between a
reference signal %rt and the output y;.

Next, say we choose E(q~!) = L(¢71) (e
N(g~') = 0) and P(¢~*) = 0, then from (63)
we have that 4; = u;. Hence, in this case, #; is
simply the true plant input. Thus, fitting a model
between #; and y; corresponds to the usual direct
identification method.

(@)

Our principal interest here is when C'(¢™1) is not the
true controller. Indeed, all we require is that C(g~!)
stabilizes the system if it were to be applied to the
system (even if it is, in fact, not in the real closed
loop!).

When C(q~1) is not the true controller, it is still easy
to compute the equations linking u; to y;. Specifically,
we have from (63) that y; and @, are related by the
following Virtual Closed Loop (where we treat @i as a
given signal).

where {v; } denotes the noise sequence and is assumed
to satisfy v, = H(q~!)w, for {w;} a white sequence.

Remark 10. The plant model G(¢~!) in (69) could
be unstable, nonlinear etc. However, for (69) to be
suitable for identification it is necessary that C'(g~1)
stabilizes the plant model. \VAVAY,

Remark 11. Equations in (69) simply represent a par-
ticular parameterized model linking u; to y; where
parts of the model are fixed and known (namely
N(g™'), E(g~') and P(¢~')) and parts are unknown
(namely the parameters in G(q~1)). See (72) below.
\YAYAY

Finally, one can ask where do we get u; from to drive
(69). The answer is again provided by (63) i.e.

P(g!)
“T B

(70)

ﬂt:ut—

Remark 12. When C(g~!) is not the true controller,
then there will exist residual correlations between
the noise and #;. This will, in turn, lead to residual
bias errors if the associated noise model is erroneous.
However, we can see that one gains the advantages of
both direct identification (i,e. 4; can be treated as a
known input into a particularly parameterized plant)
and indirect identification can be performed since the
virtual controller is exactly known. \VAVAV}



Table 3. Monte-Carlo comparison between VCL (PEM) and Direct (PEM) method for
N = 3000 data points

l 2, =0.1

[ o | b ]

True Values

0.8 | 02

Mean Value VCL Identification

0.7955|0.1990

Mean Value Direct Identification

0.8634/0.3041

Mean Value Indirect Identification

0.7746|0.1515

9.1 Analysis of the effect of the virtual closed loop on
bias

Our goal in this section is to show that the use of a vir-
tual closed loop has a beneficial effect on estimation
accuracy. In particular, we wish to study the effect of
the virtual closed loop on the correlation between w
and u; and hence on the bias expression given in (59).

The key difference between direct identification and
virtual closed loop identification is that direct identifi-
cation is based on the model

yr = Goup + Howy (71)

whereas, the virtual closed loop identification is based
on (69) which can also be expressed as

1+

t :Tyﬂt +H’U)t
(72)

%ﬂ—i— il w
Ye cc" T 11ac

The key problems with (71) are

(1) One cannot run the model GG in open loop if it is
unstable.

(2) The presence of feedback means that u, and
wy are potentially highly correlated which is a
source of robustness and bias problems.

On the other hand, the model 1Gc%:c’* can be stable
even if (G is unstable. Also, the correlations between
% and w; are potentially much less than between
u; and w;. The implications of the above observa-
tions are explained in detail in (Agiiero and Good-
win, 2004b; Agiiero and Goodwin, 2004a; Agiiero,
2005). In particular we argue in (Agiiero and Good-
win, 2004a; Agiiero, 2005), that the bias resulting
from virtual closed loop identification has the form

G=GA—C' (1=} (73)
where
A= - (74)
1+ kCAHA

where  is a frequency dependent parameter, Ca
denotes the relative error in the virtual controller i.e.
the true controller C is expressed as

C;=C(1+Ca) (75)

and where HA denotes the error in the noise model,
ie.

(76)
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Also note that « is inversely proportional to the size of
the reference signal spectrum.

Remark 13. We see from (73) that the bias in the
estimate will be small if any of the following three
conditions is satisfied

(1) Ha is small (i.e. small noise model errors)

(2) Ca is small (i.e. small errors between C and the
true controller).

(3) The reference signal dominates disturbances.

\YAYAY

Thus, the virtual closed loop method achieves the best
features of both direct and direct identification.

9.1.1. Example Consider the following system:

_ bt

Go(g™h) = T_ag 1

(77)

with ¢ = 0.8, and b = 0.2. This system is operated
in closed loop with the following nominal linear con-
troller:

_ 0.3
Cl(q 1) = 1 7q71

However, the true controller operates in such a fashion
that the input signal saturates such that |u;| < 5.
(Recall the saturating controller used in the motivating
example of Section 2). Thus, the true controller, C,
is actually nonlinear. The reference signal r; is taken
to be zero mean Gaussian white noise process of
variance o2 = 30. The noise w, is taken to be zero
mean Gaussian white noise process of variance 02, =
0.1 (62 ~ 5). The true noise model is given by
1
L+dig t +doq2 +d3q > + dag™*
(79)

(78)

Ho(qil)

where dqi = —1.992, dy = 2.202, d3 = —1.841, and
ds = 0.8941.

In order to identify the process, we assume (incor-
rectly) that the noise model, H, is an autoregressive
AR model of first order. (This is, after all, not un-
reasonable, since the system is a first order transfer
function). We then identify the process by using di-
rect identification, and also by using the virtual closed
loop method with the virtual controller equal to the
true controller (but without saturation). For the Virtual
Closed Loop (VCL) case, we use a PEM to identify the
virtual closed loop transfer function. (We use a filter



E = 1—0.95¢71). We then extract the estimate of
the open loop model by using the known relationship
between the open and closed loop parameters. We
carried out 400 Monte-Carlo simulations for 3000 data
points. The average models so obtained are presented
in table 3.

We can see that, for this example, the model obtained
by using direct identification is not satisfactory — there
is a significant model misfit due to a poor noise model.
Also, the model found by indirect identification is
poor. This is because the controller occasionally satu-
rates. On the other hand, the model obtained by using
the virtual closed loop method is extremely close to
the true model.

The reason for this improvement is that the use of a
virtual closed loop, dramatically reduces the bias due
to the reduction in the value of 3. (see equation (73)).

10. A SECOND INDUSTRIAL EXAMPLE

Finally, we present a second industrial case study that
illustrate some of the issues raised above.

The system is a continuous metal caster which re-
quires very good level control in the mould to ensure
that product quality is maintained at a high standard.
The system input is the position of a slide gate valve,
and the output is the height of molten metal in the
mould.

The company had applied non robust identification
methods, to data collected during normal operation,
to obtain a model of the system for the purpose of
improving their control system. Their analysis rec-
ommended models of 4th and 5th order. When these
models were used to design a controller, very poor
control was experienced. The problem was that they
were operating in closed loop with no external excita-
tion in the presence of significant output disturbances.
Hence, as discussed in previous sections, they were
actually identifying a model that was strongly biased
toward the negative inverse of the controller. This can
be clearly seen in Figure 6 were a Bode magnitude plot
of the Empirical Transfer Function Estimate (ETFE)
(Ljung, 1999) and —1/C are presented.

Recognising the problem associated with identifica-
tion in closed loop, one can then set about ensuring
that the bias towards the negative inverse of the con-
troller in minimised. This was accomplished in this
case study by adding external excitation to the system
such that a reasonably large signal to noise ratio was
obtained at the output at a fixed set of frequencies. In
this particular case the external signal was added to the
controller output (plant input). Figure 5 shows a time
slice of both the input and output signals during an
experiment where a sum of sinusoids was applied as
the external excitation. The Bode magnitude response
of the system to the test signal can be seen in Figure 6
as indicated by the x symbols.
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Fig.

By utilising only the test frequencies in the identifica-
tion algorithm it is clearly seen by the dash-dot line in
Figure 6 that the system is very similar to that of the
theoretical model (dotted line).

Clearly this case study shows that thought must be
given to the experiment when a system is operating in
closed loop if robust results are to be obtained. It is not
sufficient to collect normal operating data and expect
to model anything other than the negative inverse of
the controller without special care.



11. CONCLUSIONS

This paper has argued that special care is needed to
ensure that robust identification is achieved. Special
emphasis has been placed on:

selecting a model class,

selecting a sampling strategy,

the effect of sampling on model aliasing,
limited bandwidth estimation,

robust experiment design, and

robust estimation for closed loop data.

Appendix A. PROOF OF THEOREM 6

Consider any open loop experiment, &,;. Since the
output power is constrained, we have that £, must
satisfy

Jostenr = [1GPongen + [l < &
(A1)

Next, considering that ®,,,{,} = 0, we have that
the covariance matrix for p satisfies

Pren) = / GiGTD e} (A2)

Consider now a closed loop experiment, &.;, which
uses the following control law

ult) = Fo(q)r(t) = Cola™y(t)
where we take
Q. = .U(I)u{fol} (A.3)
and where  is a scalar which satisfies
K — [|S,H,|?02
1 < p< K= SISt o, (A4)

o K7I|H0 20121;

Note that it is always possible to find y which satis-
fies equation (A.4) provided there exists a controller,
different from zero, such that [ |S,H,[* < [ |H,|?.

The input and output signals are given by:
y(t) = GoS,Sor(t) + SoHow(t)
u(t) = S,S8,r(t) — CoH,Sow(t)

where F, = S,(g"')and S,(¢7!) =

)
So(q™") is stable and S,(g~"')S,(¢™") is all pass
(‘SOSO|2 = 1)

This in turn implies that
(I)u{gcl} = q)r + |COSOHO‘20-72U

= M(I)u{gol} + |COSOHO‘20-121) (A.5)
éuw C 2
'U% — 1,5, H|o2 (A6

and
(I)y{fcl} = |G0‘2¢T + |SOHO|2012u
= N|GO‘2¢u{£ol} + |SOH0|205;

I S
1+Go(g=1)Co(qg™ 1)
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The output power for the closed loop experiment
satisfies

[oster = [ 160t + [ 1,020

Hence, considering equations (A.1) and (A.4), we
have that

[ostear <u (K -/ Ho|2o—z) + [ 15,

<K

which means that the closed loop experiment (A.3),
(39) satisfies the output power constraint.

Finally, using part 1 of Lemma 4 and equations (A.5)
and (A.6) we have that

P} > / G1GY {%{fd}
—u / C1GH D, {6}

_ |q)uw{£cl}|2
2

w

which implies (using equations (A.2) and (A.4)) that:
PyHEa} = nPy e} > Py €t}

which shows that & >p- &,1- This concludes the proof.
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