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Abstract— In this paper, we investigate dynamic channel
and rate selection in cognitive radio systems which exploit
a large number of channels free from primary users. In
such systems, transmitters may rapidly change the selected
(channel, rate) pair to opportunistically learn and track
the pair offering the highest throughput. We formulate
the problem of sequential channel and rate selection as an
online optimization problem, and show its equivalence to
a structured Multi-Armed Bandit problem. The structure
stems from inherent properties of the achieved throughput
as a function of the selected channel and rate. We derive
fundamental performance limits satisfied by any channel
and rate adaptation algorithm, and propose algorithms
that achieve (or approach) these limits. In turn, the pro-
posed algorithms optimally exploit the inherent structure
of the throughput. We illustrate the efficiency of our
algorithms using both test-bed and simulation experiments,
in both stationary and non-stationary radio environments.
In stationary environments, the packet successful trans-
mission probabilities at the various channel and rate
pairs do not evolve over time, whereas in non-stationary
environments, they may evolve. In practical scenarios, the
proposed algorithms are able to track the best channel
and rate quite accurately without the need of any explicit
measurement and feedback of the quality of the various
channels.

I. INTRODUCTION

In cognitive radio systems, radio devices may access
a potentially large number of frequency bands or chan-
nels. An example of such systems are those exploiting
”white space” spectrum, the unused part of the TV/UHF
spectrum (unallocated or not used locally). The FCC
2008 ruling allowed unlicensed devices to use parts of
this spectrum, provided that devices can detect primary
users (TV transmitters and wireless microphones). As a
part of the 2010 ruling [1], FCC mandates the use of a
geolocation database to identify which frequencies are
free from primary users. By querying the geolocation
database, we are guaranteed to obtain a set of channels
free from primary transmitters and we avoid the difficult
problem of sensing primary users.

We consider systems exploiting channels known to be
free from primary users. For the transmission of each

packet, transmitters can select a coding rate from a finite
predefined set (as in 802.11 systems for example) and a
channel from the set of available channels. The outcome
of a packet transmission is random, and the probabilities
of successfully transmitting a packet using the various
(channel, rate) pairs are a priori unknown at the trans-
mitter; they need to be learnt based on trial and error.
These probabilities can vary significantly and randomly
over time and across channels; they also strongly depend
on the chosen coding rate. As a consequence, tracking
the best (channel, coding rate) pair for transmission may
greatly improve the system performance. In this paper,
we aim at designing sequential channel and coding rate
selection schemes that efficiently track the best available
channel and the corresponding coding rate.

As shown in previous works, see e.g. [2], [3], RSSI
(Receive Signal Strength Indicator) is a poor predictor
of channel quality, and hence of the packet success-
ful transmission probabilities. In OFDM systems for
example, this stems from the fact that RSSI does not
report the individual signal strength experienced on the
various sub-carriers. In order to accurately estimate the
quality of a wide-band channel, more sophisticated tech-
niques with specific hardware are needed [4], [5]. But
these techniques are not typically supported in current
commercial radio hardware. Instead, we need to infer
the quality of each channel at each transmission rate
through probing. Several packets have to be sent on each
channel and at each rate to construct a reliable estimate
of the channel quality. In the design of channel and rate
selection schemes, we then face a classical exploration
vs. exploitation trade-off problem. We need to exploit the
(channel, rate) pair that has offered the best throughput
so far, whilst constantly exploring other pairs in case one
of them is actually optimal.

We rigorously formulate the design of the optimal
sequential (channel, rate) selection algorithms as an
online stochastic optimization problem. In this problem,
the objective is to maximize the number of packets
successfully sent over a finite time horizon. We show
that this problem reduces to a Multi-Armed Bandit
(MAB) problem [6]. In MAB problems, a decision maker
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sequentially selects an action (also called an “arm”), and
observes the corresponding reward. Rewards of a given
arm are random variables with unknown distribution.
The objective is to design sequential action selection
strategies that maximize the expected reward over a
given time horizon. These strategies have to achieve an
optimal trade-off between exploitation (actions that have
provided high rewards so far have to be selected) and
exploration (sub-optimal actions have to be chosen so
as to learn their average rewards). For our (channel,
rate) selection problem, the various arms correspond
to the decisions available at the transmitter to send
packets, i.e., an arm corresponds to a channel and a
coding rate. When a (channel, rate) pair is selected for
a packet transmission, the reward is equal to 1 if the
transmission is successful, and equal to 0 otherwise. The
average successful packet transmission probabilities at
the various (channel, rate) pairs are unknown, and have
to be learnt.

The MAB problem corresponding to the design of
channel and rate selection mechanisms is referred to
as a structured MAB problem. It differs from classical
MAB problems. (i) First, the rewards associated with
the various rates on a given channel are stochastically
correlated, i.e., the outcomes of transmissions at different
rates are not independent: for example, if a transmission
at a high rate is successful, it would be also successful at
lower rates. (ii) Then, the average throughputs achieved
at various rates exhibit natural structural properties. For
a given channel, the throughput is an unimodal function
of the selected rate. (iii) In addition, most often, on all
channels, the packet successful transmission probabilities
are close to 1 at low rates, and abruptly decrease to 0
as the rate increases. This additional structure, referred
to as graphical unimodality, allows us to predict the
outcomes of transmissions on various channels. As we
demonstrate, correlations and (graphical) unimodality are
instrumental in the design of channel and rate selection
mechanisms, and can be exploited to learn and track the
best (channel, rate) pair quickly and efficiently. Finally,
note that most MAB problems consider stationary envi-
ronments, which, for our problem, means that the suc-
cessful packet transmission probabilities for the different
(channel, rate) pairs do not vary over time. In practice,
the transmitter faces a non-stationary environment as
these probabilities could evolve over time. We consider
both stationary and non-stationary radio environments.

In the case of stationary environments, we derive
an upper bound of the expected reward that can be
achieved in structured MAB problems. This provides a
fundamental performance limit that any (channel, rate)
selection algorithm cannot exceed. This limit quantifies

the inevitable performance loss due to the need to
explore sub-optimal (channel, rate) pairs. It also indicates
the performance gains that can be achieved by devising
schemes that optimally exploit the correlations and the
structural properties of the MAB problem. We present
sequential (channel, rate) selection algorithms that op-
timally exploit the structural properties of the problem:
for our algorithms, we prove that the performance loss
due to the need to explore sub-optimal (channel, rate)
pairs does not depend on the number of available rates.
We also extend our algorithms to non-stationary radio
environments. Finally, we evaluate the performance of
the proposed algorithms using an office white-space
testbed operating in the 500MHz-600MHz band, and
simulation experiments.

Contributions and paper organization.
• The next section is devoted to the related work.
• In Sections III and IV, we present the models and

objectives. We formulate the design of (channel,
rate) selection algorithms as an online optimization
problem, and establish its equivalence to a struc-
tured MAB problem.

• We derive, in Section V, a performance upper bound
satisfied by any (channel, rate) selection algorithm,
depending on the assumptions made on the structure
of the problem – three scenarios with increasing
structure are considered: 1. no structural assumption
is made; 2. the throughput on each channel is a
unimodal function of the rate; 3. the throughput
is a graphically unimodal function of the channel
and rate. We also quantify the performance gains
that one may achieve by exploiting the structural
properties of the problem.

• In Section VI, we propose three (channel, rate)
selection algorithms, one for each of the above sce-
narios, and analyze their performance in stationary
radio environments. We prove that our algorithms
optimally exploit the structural properties of the
throughputs.

• The extensions of our algorithms to non-stationary
radio environments are briefly presented in Sec-
tion VII.

• Finally, Section VIII is devoted to test-bed and
simulation experiments.

II. RELATED WORK

First observe that the joint channel and rate selection
problem is considerably more difficult than detecting
channels with no primary users as considered in a lot
of recent works, see e.g. [7], [8], [9], [10], [11], [12],
[13]. In some of these papers, a MAB framework has
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been used to design primary user detection algorithms.
The presence or the absence of primary users just means
that a channel is either good or bad. When selecting
both channel and rate, the dimension of the problem
becomes larger, and there are multiple and numerous
possible channel states. Primary users are not considered
in our work, as we assume that transmitters can use a
geolocation database to get a list of channels free from
primary users [1].

It should also be observed that most of the work
on dynamic spectrum access considers stationary radio
environments. In [9], [10] for example, the authors use
classical stochastic control techniques (Markov Decision
Processes) to sequentially select a channel for transmis-
sion. The underlying assumption is that the environment
is stationary, i.e., the packet successful transmission
probabilities do not evolve over time. In this paper,
both stationary and non-stationary radio environments
are explored. Test-bed experiments actually suggest that
the environment is non-stationary in practice, even in
networks where nodes do not move such as indoor
offices, see e.g. [3].

Our problem resembles the rate adaptation problem in
802.11 systems, see e.g. [14], [15], [16]. But again, our
problem has one additional dimension (a channel has to
be selected): in turn, the number of available decisions
at the transmitter is much larger than in 802.11 systems
where only the rate has to be chosen. Rate adaptation
algorithms are not applicable when the channel can also
be selected for each packet transmission. This is due
to the fact that the transmitter does not continuously
monitor the same channel (as in 802.11 systems), and has
to switch channels often to discover the best (channel,
rate) pair as rapidly as possible.

There is an abundant literature on MAB problems,
and engineers have applied these problems to dynamic
spectrum access [8], [10], [11], [17]. Most existing
theoretical results, see [18] for a recent survey, are con-
cerned with unstructured MAB problems, i.e., problems
where the average reward associated with the various
decisions are not related. For this kind of problems,
Lai and Robbins [6] derived an asymptotic lower bound
on regret and also designed optimal sequential decision
algorithms. When the average rewards are structured (as
this is the case for our problem), the design of optimal
decision algorithms is more challenging, see e.g. [18].
Non-stationary environments have not been extensively
studied in the bandit literature: Most often unstructured
MAB only are analyzed, see [19], [20], [21].

To our knowledge, the only work dealing with joint
(channel, rate) selection is [3]. However there, the struc-
tural properties of the corresponding MAB problem

had not been identified, and the authors only proposed
algorithms based on heuristics. This contrasts with the
present work: we rigorously determine fundamental lim-
its satisfied by any (channel, rate) adaptation algorithm,
and propose algorithms approaching these limits.

III. MODELS

We consider a single link (a transmitter-receiver pair).
At time 0, the link becomes active and the transmitter
starts sending packets to the receiver. For each packet,
the transmitter selects a channel from a finite set C =
{1, . . . , C}, and a coding and modulation scheme from
a finite set R = {rk, k ∈ K}, with K = {1, . . . ,K}.
R is ordered, i.e., r1 < r2 < . . . < rK . After a
packet is sent, the transmitter is informed of whether the
transmission has been successful. Based on the observed
past transmission successes and failures at the various
channels and rates, the transmitter has to select a channel
and rate pair for the next packet transmission. Let Π
denote the set of all possible sequential (channel, rate)
selection schemes. Packets are assumed to be of equal
size, and without loss of generality, for any k, the
duration of a packet transmission at rate rk is 1/rk.

A. Channel models

For the i-th packet transmission on channel c at
rate rk, a binary random variable Xck(i) represents
the success (Xck(i) = 1) or failure (Xck(i) = 0)
of the transmission. We consider both stationary and
non-stationary radio environments. In stationary envi-
ronments, the success transmission probabilities on the
various channels and at different rates do not evolve over
time. This arises when the system considered is static
(in particular, the transmitter and receiver do not move).
In non-stationary environments, success transmission
probabilities can evolve over time. Unless otherwise
specified, we consider stationary radio environments.
Non-stationary environments are treated in Section VII.

We assume that Xck(i), i = 1, 2, . . ., are independent
and identically distributed, and we denote by θck the
success transmission probability on channel c at rate rk:
θck = E[Xck(i)]. We verified that the i.i.d. assumption
holds in our test-bed and simulation framework. De-
note by (c?, k?) the optimal (channel, rate) pair, i.e.,
(c?, k?) ∈ arg maxc,k rkθck. To simplify the exposition
and the notation, we assume that the optimal (channel,
rate) pair is unique, i.e., rk?θc?k? > rkθck, for all
(c, k) 6= (c?, k?). We further introduce, for any channel
c, the optimal rate rk?c , i.e., (c, k?c ) ∈ arg maxk rkθck.
Again for simplicity, we assume that on any channel, the
optimal rate is unique: rk?c θck?c > rkθck, for all k 6= k?c .
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The throughput achieved using (channel, rate) pair (c, k)
is denoted by µck = rkθck. The maximum throughput
on channel c is µ?c = µck?c , and the throughput achieved
using the optimal (channel, rate) pair is µ? = µ?c? =
µc?k? .

B. Structural properties

The successful transmission probabilities θ =
(θck, c ∈ C, k ∈ K) are initially unknown at the
transmitter, and have to be learnt. When the number
of (channel, rate) pairs grows large, learning the best
pair for transmission then becomes really challenging.
Fortunately, the outcomes of transmissions using the
various (channel, rate) pairs exhibit structural properties
that can be exploited to speed up the learning process.
To emphasize the importance of exploiting the structural
properties, we consider three scenarios with increasing
structure.

1) Scenario 1 – No structure: If no structural assump-
tions are made regarding the successful transmission
probabilities, then θ ∈ [0, 1]C×K . In such scenarios, we
will show that the performance loss due to the need to
explore sub-optimal (channel, rate) pairs scales linearly
with the number of channels and rates.

2) Scenario 2 – Unimodality: First observe that the
successes and failures of transmissions on a given chan-
nel at various rates are statistically correlated. Indeed,
if a transmission is successful at a high rate, it has
to be successful at a lower rate. Similarly, if a low-
rate transmission fails, then transmitting at a higher rate
would also fail. Formally this means that for any channel
c, θc = (θc1, . . . , θcK) ∈ T , where T = {η ∈ [0, 1]K :
η1 ≥ . . . ≥ ηK}. Then, in practice, it has been observed
(and this is confirmed in our numerical experiments)
that the throughput achieved on a given channel is a
unimodal function of the transmission rate, see e.g. [5],
[16]. In other words, for any channel c, θc ∈ U , where
U = {η ∈ [0, 1]K : ∃k1, r1η1 < . . . < rk1ηk1 , rk1ηk1 >
rk1+1ηk1+1 > . . . > rKηK}. In summary in Scenario 2,
for any channel c, θc ∈ T ∩ U .

3) Scenario 3 – Graphical unimodality: We further
observe (see Section VIII) that on a given channel,
the throughput first grows linearly with the rate (the
successful transmission probability is close to 1), and
then abruptly decreases to 0. This observation has been
made in earlier work, see [14] (the author refers to
this scenario as the steep throughput scenario), [5].
This knowledge can be exploited to build a relationship
between the throughputs achieved on various channels.
Indeed, for example, the throughputs observed on two
different channels are roughly identical in their growth

phase (when the rates are low and the success proba-
bilities are close to 1). To exploit this observation, we
remark that if it holds, the throughput is a graphically
unimodal function of the (channel, rate) pair as defined
below.

We first construct a directed graph G = (V,E) whose
vertices correspond to the (channel, rate) pairs. When
(d, d′) ∈ E, we say that the decision d′ is a neighbor of
decision d, and we define N (d) = {d′ ∈ V : (d, d′) ∈
E} as the set of neighbors of d. The throughput or
average reward of decision d = (c, k) is denoted by
µd = rkθck. Graphical unimodality expresses the fact
that when the optimal decision is d? = (c?, k?), then for
any d ∈ V , there exists a path in G from d to d? along
which the expected reward is strictly increasing. In other
words there is no local maximum in terms of expected
reward except at d?. The notion of locality is defined
through that of neighborhood N (d), d ∈ V . Formally,
θ ∈ UG, where UG is the set of successful transmission
probabilities θ ∈ [0, 1]C×K such that, if d? = (c?, k?) ∈
arg max(c,k) rkθck, for any d = (c, k) ∈ V , there exists
a path (d0 = d, d1, . . . , dp = d?) in G such that for any
i = 1, . . . , p, µdi > µdi−1

.
Let us now complete the construction of graph G. The

set of edges E is: ((c, k), (c, k − 1)), ((c, k), (c, k + 1))
and ((c, k), (c′, k)), ((c, k), (c′, k + 1)) for all (channel,
rate) pair (c, k), and all c′. An example of such a graph
G is presented in Figure 1 – for 2 channels and 4 rates.
When the above observation made on θ holds (steep
scenario as defined in [14]), it is easy to check that
the throughput is a graphically unimodal function (w.r.t.
graph G) of the channel and rate. In all practical cases,
beyond the steep throughput scenario, we have actually
observed that the graph G as constructed above had
enough edges to guarantee the graphical unimodality of
the throughput, see Section VIII.

Fig. 1. Example of a graph providing unimodality of the throughput.

In summary, in Scenario 3, we assume that θ ∈ T C ∩
UG. Note that there is more structure in Scenario 3 than
in Scenario 2: if θ ∈ T C∩UG, then for any c, θc ∈ T ∩U .

IV. OBJECTIVES AND MULTI-ARMED BANDITS

Our goal is to devise a sequential (channel, rate)
selection scheme that maximizes the number of packets
successfully transmitted over a finite time horizon. Such
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a design can be formulated as an online stochastic
optimization problem. The choice of the time horizon,
denoted by T , is not really important as long as during
time interval T , a large number of packets can be sent
– so that inferring the success transmission probabilities
efficiently is possible.

Consider a rate adaption scheme π ∈ Π that selects
(channel, rate) pair (cπ(t), kπ(t)) for the t-th packet
transmission. The number of packets γπ(T ) that have
been successfully sent under algorithm π up to time T
is: γπ(T ) =

∑
c,k

∑sπck(T )
i=1 Xck(i), where sπck(T ) is the

number of transmission attempts on channel c at rate
rk before time T . The sck(T )’s are random variables
(since the rates selected under π depend on the past
random successes and failures), and satisfy the following
constraint: ∑

c,k

sπck(T )× 1

rk
≤ T.

Wald’s lemma implies that the expected number of
packets successfully sent up to time T is: E[γπ(T )] =∑

c,k E[sπc,k(T )]θck. Thus, our objective is to design
an algorithm solving the following online stochastic
optimization problem:

max
π∈Π

∑
c,k E[sπck(T )]θck, (1)

s.t.
∑

c,k s
π
ck(T )× 1

rk
≤ T, ∀c, k, sπck(T ) ∈ N.

A. An equivalent Multi-Armed Bandit (MAB) problem

Next we show that the above online stochastic opti-
mization problem is equivalent to a Multi-Armed Bandit
(MAB) problem.

1) An alternative system: Without loss of generality,
we assume that time can be divided into slots whose
durations are such that for any k, the time it takes to
transmit one packet at rate rk corresponds to an integer
number of slots. Under this convention, the optimization
problem (1) can be written as:

max
π∈Π

∑
c,k E[tπck(T )]rkθck, (2)

s.t.
∑

c,k t
π
ck(T ) ≤ T,

∀c, k, tπck(T ) ∈ 1
rk
N = { urk , u ∈ N},

where tπck(T ) = sπck(T )/rk represents the amount of
time (in slots) that the transmitter spends, before T , on
sending packets on channel c at rate rk. The constraint
tck(T ) ∈ 1

rk
N indicates that when a rate is selected, this

rate selection remains the same for the next 1/rk slots.
By relaxing this constraint, we obtain an optimization
problem corresponding to a MAB problem. Indeed, con-
sider now an alternative system where rate selection is
made every slot. If at any given slot, (channel, rate) pair

(c, k) is selected for the i-th times, then if Xck(i) = 1,
the transmitter successfully sends rk bits in this slot,
and if Xck(i) = 0, then no bit are received. A (channel,
rate) selection algorithm then decides in each slot which
(channel, rate) pair to use. There is a natural mapping
between rate selection algorithms in the original system
and in the alternative system: let π ∈ Π, if for the t-th
packet transmission, rate rk is selected under π in the
original system, then π selects the same rate rk in the
t-th slot.

For the alternative system, the objective is to design
π ∈ Π solving the following optimization problem,
which can be interpreted as a relaxation of (2).

max
π∈Π

∑
c,k E[tπck(T )]rkθck, (3)

s.t.
∑

c,k t
π
ck(T ) ≤ T,

∀c, k, tπck(T ) ∈ N.

The above optimization problem corresponds to a MAB
problem, where in each slot a decision is taken (i.e., a
channel and a rate are selected), and where when (c, k)
is chosen, the obtained reward is rk with probability θck
and 0 with probability 1− θck.

2) Regrets: We quantify the performance of an algo-
rithm π ∈ Π in both original and alternative systems
through the notion of regret. The regret up to slot T
compares the performance of π to that achieved by an
algorithm always selecting the best (channel, rate) pair.
If the parameter θ = (θck, c, k) was known, then in both
systems, it would be optimal to always select (channel,
rate) pair (c?, k?). The regret of algorithm π up to time
slot T in the original system is then defined by:

Rπ1 (T ) = θc?k?brk?T c −
∑
c,k

θckE[sπck(T )],

where bxc denotes the largest integer smaller than x.
The regret of algorithm π up to time slot T in the

alternative system is similarly defined by:

Rπ(T ) = θc?k?rk?T −
∑
c,k

θckrkE[tπck(T )].

3) Asymptotic equivalence: In the next section, we
show that an asymptotic lower bound for the regret
Rπ(T ) is of the form c(θ) log(T ) where c(θ) is a strictly
positive constant that we can explicitly characterize. It
means that for all π ∈ Π, lim infT→∞R

π(T )/ log(T ) ≥
c(θ). It can be also shown that there exists an al-
gorithm π? ∈ Π that actually achieves this lower
bound in the alternative system, in the sense that
lim supT→∞R

π?(T )/ log(T ) ≤ c(θ). In such a case,
we say that π? is asymptotically optimal. The following
proposition states that actually, the same lower bound
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is valid in the original system, and that any asymptoti-
cally optimal algorithm in the alternative system is also
asymptotically optimal in the original system.

Proposition 1: Let π ∈ Π. For any β > 0, we have:

lim inf
T→∞

Rπ(T )

log(T )
≥ β =⇒ lim inf

T→∞

Rπ1 (T )

log(T )
≥ β,

and

lim sup
T→∞

Rπ(T )

log(T )
≤ β =⇒ lim sup

T→∞

Rπ1 (T )

log(T )
≤ β.

Proof. Let T > 0. By time T , we know that there
have been at least bTr1c transmissions, but no more than
dTrKe. Also observe that both regrets Rπ and Rπ1 are
increasing functions of time. We deduce that:

Rπ(bTr1c) ≤ Rπ1 (T ) ≤ Rπ(dTrKe).

Now

lim inf
T→∞

Rπ1 (T )

log(T )
≥ lim inf

T→∞

Rπ(bTr1c)
log(T )

= lim inf
T→∞

Rπ(bTr1c)
log(bTr1c)

≥ β.

The second statement can be derived similarly. �

B. MAB problems
Instead of trying to solve (1), we rather focus on

analyzing the MAB problem (3). We know that optimal
algorithms for (3) will also be optimal for the original
problem. The nature of the MAB problem (3) depends on
the structural assumption made on the successful trans-
mission probabilities θ. In absence of such assumption
(Scenario 1), we get a classical MAB problem where
the rewards provided by all decisions are independent.
In Scenarios 2 and 3, we get a structured MAB problem,
as we know a priori that θ belongs to a structured set,
which helps learning the best (channel, rate) pair. Next
we summarize the MAB problems obtained in the three
different scenarios.

We have a set {1, . . . , C} × {1, . . . ,K} of possible
decisions (i.e., (channel,rate) pairs). If decision (c, k) is
taken for the i-th time, we receive a reward rkXck(i).
(Xck(i), i = 1, 2, ...) are i.i.d. with Bernoulli distribution
with mean θck. The objective is to design a decision
scheme minimizing the regret Rπ(T ) over all possible
algorithms π ∈ Π. The three MAB problems differ
depending on the structural assumptions made on θ.

Unstructured MAB (PI). No assumption is made on θ:
θ ∈ [0, 1]C×K .

Structured MAB (PU ). We assume that θc ∈ T ∩U for
all channel c.

Structured MAB (PGU ). We assume that θ ∈ T C∩UG.

V. REGRET LOWER BOUNDS

In this section, we derive an asymptotic (as T grows
large) lower bound of the regret Rπ(T ) satisfied by any
algorithm π ∈ Π in the three MAB bandit problems
(PI), (PU ), and (PGU ). These lower bounds provide
insightful theoretical performance limits satisfied by any
(channel, rate) selection scheme. By comparing the lower
bounds derived for the three problems, we also quantify
the performance gains that can be achieved by smartly
exploiting the (a priori) known structure.

A. Unstructured MAB (PI)

The regret lower bound for MAB problem (PI) can
be derived using the direct technique used by Lai and
Robbins [6]. Note that the only difference between (PI)
and the classical MAB problems [6] lies in the fact that
in (PI), we know that the average reward of decision
(c, k) is of the form rkθck for known rk. The analysis of
(PI) is then similar to that of classical bandit problems.

We first introduce the notion of uniformly good al-
gorithms. An algorithm π is uniformly good, if for all
parameters θ, for any α > 0, we have1: E[tπck(T )] =
o(Tα),∀(c, k) 6= (c?, k?), where tπck(T ) is the number of
times (channel, rate) pair (c, k) has been chosen up to
the T -th decision, and (c?, k?) is the optimal channel and
rate pair (it depends on θ). Uniformly good algorithms
exist as we shall see later on.

Let N = {k : µ? ≤ rk} – note that N depends on
θ. There exists k0 such that N = {k0, . . . ,K}, with the
convention k0 = K + 1 if N = ∅. Note that if k < k0,
then for any channel c, rk?θck? > rk, which means that
even if all transmissions at rate rk on channel c were
successful, i.e., θck = 1, rate rk would be sub-optimal.
Hence, there is no need to select rate rk to discover this
fact, since by only selecting rate rk? on channel c?, we
get to know whether rk?θc?k? > rk ≥ rkθk.

Finally, we introduce the Kullback-Leibler (KL) diver-
gence, a well-known measure for dissimilarity between
two distributions. When we compare two Bernoulli dis-
tributions with respective averages p and q, the KL
divergence is: I(p, q) = p log p

q + (1− p) log 1−p
1−q .

Theorem 1: Let π ∈ Π be a uniformly good rate
selection algorithm for MAB problem (PI ). We have:
lim infT→∞

Rπ(T )
log(T ) ≥ cI(θ), where

cI(θ) =

K∑
k=k0:k 6=k?

µ? − rkθc?k
I(θc?k,

µ?

rk
)

+
∑
c 6=c?

K∑
k=k0

µ? − rkθck
I(θck,

µ?

rk
)
.

1f(T ) = o(g(T )) means that limT→∞ f(T )/g(T ) = 0.



7

The proof of the previous theorem is similar to that of
the regret lower bound in [6], and is omitted here. In view
of this result, if we do not exploit structural properties
of the problem, then the regret of any algorithm scales
at least as CK log(T ). Hence, when the number of
channels and rates grow large, no algorithm is able to
learn the best (channel, rate) pair rapidly and efficiently.

B. Structured MAB (PU )

To derive a regret lower bound for MAB problem
(PU ), we need to introduce additional notations. We
define M = N ∩ {k? − 1, k? + 1}. For any channel
c, let Nc = {k : µ?c ≤ rk}, and k0c such that Nc =
{k0c, . . . ,K}, with the convention k0c = K + 1 if
Nc = ∅. Observe that for any c 6= c?, k0c ≤ k0. Let
Mc = Nc ∩ {k?c − 1, k?c + 1}.

Theorem 2: Let π ∈ Π be a uniformly good (channel,
rate) selection algorithm for MAB problem (PU ). We
have: lim infT→∞

Rπ(T )
log(T ) ≥ cU (θ), where cU (θ) is the

optimal value of the following optimization problem:

inf
αck≥0,∀k,c

∑
(c,k)6=(c?,k?)

αck(µ
? − µck)

s.t. ∀k ∈M,αc?kI(θc?k,
µ?

rk
) ≥ 1,

∀c 6= c? : k?c ≥ k0, αck?c I(θck?c ,
µ?

rk?c
) ≥ 1, and

∀k ≥ k0, k 6= k?c , inf
λc∈Ck

∑
l

αclI(θcl, λcl) ≥ 1,

where Ck = {λc ∈ U ∩ T : rkλck > µ?}.

All proofs are presented in Appendix. The above
theorem does not provide a fully explicit regret lower
bound. In particular, it remains unclear how this lower
bound scales with the numbers of rates and channels. In
the following theorem, we further exploit the structural
properties of the MAB problem (PU ) to show that cU (θ)
scales at most linearly with the number of channels, and
does not scale with the number of rates.

Theorem 3: We have cU (θ) ≤ c′U (θ) where

c′U (θ) =
∑
k∈M

µ? − µc?k
I(θc?k,

µ?

rk
)

+
∑
c 6=c?

[
µ? − µck?c

min{I(θck?c ,
µ?

rk?c
), I(θck?c , θck?c −

δc
rk?c

)}

+
∑
k∈Mc

µ? − µck
I(θck, θck + δc

rk
)

]
. (4)

and
δc = min

k∈{k?c−1,k?c+1}
(µck?c − µck)/2.

In particular, c′U (θ) is proportional to the number of
channels and independent of the number of rates.

From the above analysis, we conclude that the mini-
mum regret for the MAB problem (PU ) scales at most as
3C log(T ). Hence we expect that exploiting the structure
of the problem (the fact that θc ∈ T ∩U for any channel
c) may significantly improve the system performance.
Indeed we expect a regret that does not depend on the
number of available rates. In the next section, we design
an algorithm with such a regret.

C. Structured MAB problem (PGU )

Graphical unimodal bandit problems have been re-
cently studied in [22], [23]. A regret lower bound is
derived in [23]. The only difference between our graph-
ically unimodal MAB problem and those considered in
[23] is that we consider directed graphs, but the analysis
is similar. We use here the notation introduced in §III-
B.3, and recall that N = {k : µ? ≤ rk}. For any
(c, k), we define N ′(c, k) = N (c, k)∩N . N ′(c, k) is the
set of (channel, rate) pairs that are neighbors of vertex
(c, k), and that need to be explored if one wants to know
whether they provide better throughput than (c, k).

Theorem 4: [23] Let π ∈ Π be a uniformly good
(channel, rate) selection algorithm for MAB problem
(PGU ). We have:

lim inf
T→+∞

Rπ(T )

log(T )
≥ cGU (θ), (5)

where

cGU (θ) =
∑

(c,k)∈N ′(c?,k?)

µ? − µck
I(θck,

µ?

rk
)
.

In view of the above theorem, for the MAB problem
(PGU ), the minimum regret scales as γ log(T ), where γ
is γ is the maximum node degree in the graph G. Note
that for our graph G, γ ≤ 2C. Hence, by exploiting the
graphical unimodal structure, we may expect to design
algorithms whose regret does not depend on the number
of available rates. In the next section, an algorithm
whose regret matches the lower bound of Theorem 4
is proposed.

In this section, we have shown that the regret lower
bound can be significantly improved when structural
assumptions are made, i.e., cGU (θ) ≤ cU (θ) ≤ cI(θ). By
exploiting the structure of the problem, we may actually
design algorithms whose regrets does not depend on the
number of available rates. Such algorithms do not exist
when the structure is not exploited (see Theorem 1).
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VI. ALGORITHMS

In this section, we present algorithms for the three
MAB problems (PI), (PU ), and (PGU ), and analyze
their regrets. For the two structured MAB problems, the
proposed algorithms exhibit a regret that does not depend
on the number of available rates.

A. The KL-UCB algorithm for MAB problem (PI)

Classical unstructured bandit problems have been ex-
tensively studied in the past, and numerous efficient
algorithms have been proposed. We build on this pre-
vious work, and present a simple extension of KL-
UCB algorithm [21] to the MAB problem (PI). This
algorithm does not exploit any structural properties, and
is asymptotically optimal: its regret matches the lower
bound derived in Theorem 1.

Under the KL-UCB algorithm, each (channel, rate)
pair (c, k) is associated with an index qck(n) for the
(n+ 1)-th packet transmission:

qck(n) = max{q ∈ [0, rk] :

tck(n)I(
µ̂ck(n)

rk
,
q

rk
) ≤ log(n) + 3 log log(n)},

where tck(n) denotes the number of times (c, k) has been
selected up to the n-th transmission, and

µ̂ck(n) =
1

tck(n)

tck(n)∑
i=1

rkXck(i),

is the empirical throughput or reward of (channel, rate)
pair (c, k) up to the n-th transmission. The algorithm
selects the (channel, rate) pair with highest index:

Algorithm 1 KL-UCB

For n = 0, . . . , CK−1 (initialization): for the (n+1)-th
transmission, select (channel, rate) pair (c, k)(n + 1) =
(c′+1, k′+1) where n = Kc′+k′, k′ ∈ {0, . . . ,K−1}.
For n ≥ CK, for the (n + 1)-th transmission, select
(c, k)(n+ 1) where (c, k)(n+ 1) ∈ arg max(c,k) qck(n).

KL-UCB is known to be asymptotically optimal in
classical bandit problems [21]. It can be easily estab-
lished that its extension is also optimal for the problem
(PI):

Theorem 5: For any θ ∈ [0, 1]C×K , the regret of the
π = KL-UCB algorithm satisfies:

lim sup
T→∞

Rπ(T )

log(T )
≤ cI(θ),

In particular, the regret under KL-UCB scales linearly
with the numbers of channels and rates. When the later

become large, the performance of KL-UCB can be quite
poor.

B. The CRS-T algorithm for MAB problem (PU )

Next, we present CRS-T (Channel and Rate Sampling
with Tests), an algorithm that exploits the structure of
the MAB problem (PU ), i.e., the fact that on each
channel, the throughput is a unimodal function of the
rate. To describe our algorithm, we introduce the fol-
lowing notations. After the n-th transmission, the rate
with the highest average empirical throughput on channel
c is referred to as the leader on channel c, and is
lc(n) = arg maxk µ̂ck(n). The global leader l(n) is
the (channel, rate) pair with highest average empirical
throughput: l(n) = arg max(c,k) µ̂ck(n).

We also introduce the following statistical tests, which
will be used to assess whether the leader on channel c,
lc(n), provides a larger reward than its neighbors lc(n)−
1, lc(n)+1 on the same channel. Let N(k) = {k−1, k+
1} denote the set of neighbors of rate rk, and define:

δck(n) = µ̂clc(n)(n)− µ̂ck(n),

δck(n) =

√√√√α log(T )

(
r2
k

2tck(n)
+

r2
lc(n)

2tclc(n)(n)

)
.

for some constant α > 1. The test for channel c at time
n is defined through Uc(n) ∈ {−1, 0, 1}:

Uc(n) =


1 if maxk∈N(lc(n))(δck(n)− δck(n)) > 0,

−1 if mink∈N(lc(n))(δck(n) + δck(n)) < 0,

0 otherwise.

The test has to be interpreted as follows. Uc(n) = 1
means that lc(n) is better than its neighbors with high
probability, Uc(n) = −1 means that lc(n) has at least
one neighbor which is better with high probability, and
Uc(n) = 0 means that we do not have enough samples
to determine whether lc(n) is better than its neighbors.
After the n-th packet transmission, we define U(n) =
{c : Uc(n) = 0} the set of channels for which we
cannot determine whether the leader lc(n) corresponds
to the best rate k?c on this channel. We also define the
set Vc(n) = {k ∈ N(lc(n)), δck(n) − δck(n) < 0}, the
set of neighboring rates which might still be better than
the leader lc(n) on channel c.

The sequential decisions under the CRS-T algorithm
are based on the indexes of the various (channel, rate)
pairs, and can be easily implemented. The index bk(n)
of decision (c, k) for the (n+ 1)-th packet transmission
is:

bck(n) = qck(n)1{(k = lc(n)) ∪ (Uc(n) 6= 1)},
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where qck(n) is the index used in the KL-UCB algo-
rithm. Note that the index of decision (c, k) is equal to
0 if k is not the leader on channel c and if Uc(n) 6= 1.
The pseudo-code for CRS-T is given below (each time
the decision is ambiguous, ties are broken arbitrarily).

Algorithm 2 CRS-T
For n = 0, . . . , CK−1 (initialization): for the (n+1)-th
transmission, select (channel, rate) pair (c, k)(n + 1) =
(c′+1, k′+1) where n = Kc′+k′, k′ ∈ {0, . . . ,K−1}.
For n ≥ CK: for the (n + 1)-th transmission, select
(c, k)(n+ 1) where
• if minc,k tck(n) < log(log(n)),

(c, k)(n+ 1) ∈ arg minc′,k′ tc′k′(n);
• else

– if U(n) 6= ∅, then c(n+ 1) ∈ U(n) and
k(n+ 1) ∈ arg mink′∈Vc(n)(n) tc(n)k′(n);

– else (c, k)(n+ 1) ∈ arg maxc′,k′ bc′k′(n).

The design of the CRS-T algorithm is motivated by
the following objectives: (1) We explore each decision at
least log log(n) times before the n-th transmission. This
makes sure that all decisions are selected infinitely many
times so that the empirical averages µ̂ck(n) converge
a.s. to their true value µck when n → +∞. (2) For all
channels, we need to play the leader and all its neghbours
until we can determine with high probability whether the
leader lc(n) is the best rate k?c . (3) If for a given channel
c, we have determined that lc(n) is k?c , then we play only
lc(n) on channel c. (4) If for a given channel c, we have
determined that lc(n) is not k?c , then we play all rates
on channel c, ignoring the unimodal structure.

The next theorem provides an asymptotic upper bound
on the regret under CRS-T. This bound scales linearly
with the number of channels, but is independent of
the number of available rates. In particular, CRS-T
efficiently exploits the structure of the MAB problem
(PU ).

Theorem 6: For any θ such that for all c, θc ∈ T ∩U ,
the regret of the CRS-T algorithm satisfies:

lim sup
T→∞

RCRS−T (T )

log(T )
≤ cCRS-T (θ),

with

cCRS-T (θ) =
∑
c

∑
k∈N(k?c )

(µ? − µck)τck

+
∑
c 6=c?

(µ? − µck?c ) max

(
1

I(θck?c , µ
?/rk?c )

, max
k∈N(k?c )

τck

)
,

and

τck =
α(r2

k + r2
k?c

)

2(µck?c − µck)2
.

The regret under CRS-T does not depend on the
number of available rates, and hence efficiently exploits
(at least asymptotically) the unimodal structure of (PU ).

C. The KL-UCB-U algorithm for MAB problem (PGU )

Finally, we present KL-UCB-U, an algorithm for
MAB problem (PGU ). KL-UCB-U is a natural exten-
sion of an algorithm proposed in [23] for graphically
unimodal bandits with undirected graphs. This algorithm
is asymptotically optimal (its regret matches the lower
bound derived in Theorem 4).

Recall that the global leader is denoted by l(n) before
the (n + 1)-th transmission. We introduce v(c,k)(n) the
number of times that (channel, rate) pair (c, k) has been
the global leader up to the n-th transmission: v(c,k)(n) =∑n

n′=1 1{l(n) = (c, k)}. The index associated with de-
cision (c, k) before the (n+ 1)-th transmission is:

bck(n) = max
{
q ∈ [0, rk] : tck(n)I

( µ̂ck(n)

rk
,
q

rk

)
≤ log(vl(n)(n)) + 3 log(log(vl(n)(n)))

}
,

For the (n+ 1)-th transmission, KL-UCB-U selects the
(channel, rate) pair in the neighborhood of the leader
with maximum index. Ties are broken arbitrarily.

Algorithm 3 KL-UCB-U

For n = 0, . . . , CK−1 (initialization): for the (n+1)-th
transmission, select (channel, rate) pair (c, k)(n + 1) =
(c′+1, k′+1) where n = Kc′+k′, k′ ∈ {0, . . . ,K−1}.
For n ≥ CK: for the (n + 1)-th transmission, select
(c, k)(n+ 1) where:

(c, k)(n+1) =

l(n) if (vl(n)(n)− 1)/γ ∈ N,
arg max

(c,k)∈N (l(n))
bck(n) otherwise.

Remember that γ is the maximum number neighbors
in G of a given (channel, rate) pair. The KL-UCB-U
algorithm periodically selects the leader to make sure
that the latter is often selected. As in [23], we can
establish that KL-UCB-U is asymptotically optimal:

Theorem 7: For any θ ∈ T C ∩ UG, the regret of
π =KL-UCB-U satisfies:

lim sup
T→∞

Rπ(T )

log(T )
≤ cGU (θ),

In particular, KL-UCB-U optimally exploits the struc-
ture of MAB problem (PGU ). In turn, if the throughput
is a graphically unimodal function of the (channel, rate)
pair, then KL-UCB-U asymptotically outperforms any
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other algorithm, and in particular CRS-T, an algorithm
designed to exploit the unimodal structure per channel
only.

VII. NON-STATIONARY RADIO ENVIRONMENTS

In practice, channel conditions may be non-stationary,
i.e., the success probabilities at various (channel, rate)
pair could evolve over time. In many situations, the
evolution over time is rather slow – refer to [3] and
to Section V for test-bed measurements. These slow
variations allow us to devise (channel,rate) adaptation
schemes that efficiently track the best (channel,rate) pair
for transmission.

We assume that for all (c, k) pairs, the transmissions
outcomes Xck(n) , n = 1, 2, . . . are independent, with
expectation θck(n) = E[Xck(n)]. At time n we define
the throughput of (c, k) µck(n) = rkθck(n), the best
throughput µ?(n) = maxc,k µck(n) and the optimal
decision (c?, r?)(n) = arg maxc,k µck(n).

Any algorithm designed for stationary radio environ-
ments can readily be extended to non-stationary environ-
ments. These extensions are obtained by replacing em-
pirical averages by averages over a sliding time window.
Let τ ≥ 1 denote the sliding window size, and define
the empirical reward µ̂ck(n) as:

µ̂τck(n) =
rk

tτck(n)

n∑
n′=n−τ+1

Xck(n
′)1{(c, k)(n′) = (c, k)},

where

tτck(n) =

n∑
n′=n−τ+1

1{(c, k)(n′) = (c, k)},

with the convention µ̂τck(n) = 0 if tτck(n) = 0. We also
define the upper confidence index of (channel, rate) pair
(c, k) as:

qτck(n) = sup{q ∈ [µ̂τck(n), rk] :

I(
µ̂τck(n)

rk
,
q

rk
) ≤ log(τ) + 3 log(log(τ))}.

We define sliding window variants of the algorithms
presented in Section VI by replacing tck(n) by tτck(n),
µ̂ck(n) by µ̂τck(n) and qck(n) by qτck(n). For instance,
KL-UCB with sliding window is the algorithm which
selects (c, k)(n) ∈ arg maxck q

τ
ck(n).

In [24], the authors show that algorithms with sliding
windows efficiently track the best decision over time
provided that the environment evolves relatively slowly.
This is confirmed in [23], where the performance of
algorithms similar to KL-UCB and KL-UCB-U with
sliding window is analyzed. Due to space limitation, we
skip this analysis; refer to [23] for more details.

VIII. NUMERICAL EXPERIMENTS

In this section we numerically illustrate the perfor-
mance of the proposed (channel, rate) selection al-
gorithms. We provide both trace-driven results, where
traces are extracted from a real test-bed [3], and simu-
lation results based on a model for the propagation of
radio waves and a mapping between channel quality and
probability of packet successful transmission on a given
(channel,rate) pair [5].

A. Test-bed experiments

In this subsection we present trace-driven experi-
ments using the test-bed described in [3]. The test-
bed is based on a SDR platform (Lyrtech SFF-SDR),
and is located in an indoor office. The PHY layer
is OFDM, as in 802.11a/g/n. There are 3 available
rates {4.5, 6, 6.75} Mbps corresponding to QPSK mod-
ulation with respective coding rates {1/2, 2/3, 3/4}.
We consider 5 channels in the UHF band centred at
{510, 530, 550, 580, 600} Mhz . The bandwidth of each
channel is 10 Mhz, and the packet size is 1500 bytes.
The trace duration is 600s.

In Fig.2, we plot the best decision (c?, k?) as a
function of time. the radio environment is non-stationary,
and the optimal decision remains constant for several
seconds. Since a packet transmission lasts about 1ms, the
packet successful transmission probabilities for various
decisions stay constant for thousands of packet trans-
missions. Therefore we have quite a lot of statistical
information to find the best decision. Furthermore the
window size used in the tested algorithms should be of
the order of a few seconds – we fix it to 2s.

In Fig.3, we plot the throughput under KL-UCB and
KL-UCB-U algorithms. For the sake of comparison, we
also plot µ?(t) the throughput of an Oracle algorithm
that always selects the optimal decision. We also plot
the throughput obtained by choosing the best static
(channel, rate) pair, computed offline. We observe that
selecting the best static pair is clearly sub-optimal, so
that adaptive algorithms can lead to a large gain in
throughput. Both decision algorithms, KL-UCB and KL-
UCB-U, manage to closely follow the best (channel, rate)
pair. KL-UCB-U provides a throughput equal to 95% of
that obtained under the Oracle algorithm, whereas the
throughput under KL-UCB is equal to 90% of that of
the Oracle algorithm. There is not a huge performance
gap between KL-UCB and KL-UCB-U because there are
few available rates, K = 3. Hence KL-UCB explores
C × K = 15 (channel,rate) pairs, while KL-UCB-U
explores (in the worse case) 2C + 1 = 11 pairs. We
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Fig. 2. Test-bed: best (channel, rate) pair (c?, k?)(t) as a function
of time.
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Fig. 3. Test-bed: throughputs of the various algorithms as a function
of time.

will show that increasing the number of available rates
K makes this difference significantly larger.

B. Simulation-based experiments

We also present numerical results based on a widely
used statistical model for radio propagation. Namely, we
assume that the channel is a multi-path Rayleigh fading
channel. When a signal is transmitted, several delayed
copies of this signal are received and the amplitude
and phase of each delayed copy is an independent
Rayleigh fading process. We use Jakes’ model to sim-
ulate Rayleigh fading with user speed set to match the
time variability of the test-bed trace presented in VIII-
A. This corresponds to static users such as laptops in an
office environment. The expected power of each delayed
path is chosen according to the field measurements
presented in [25].

We assume that OFDM is used, and the mapping

rk 6 13 19.5 26 39 52 58.5 65
θ1,k 1 1 1 1 1 0.2 0 0
θ2,k 1 1 1 1 1 1 0.7 0.1
θ3,k 1 1 1 1 1 0.6 0 0
θ4,k 0 0 0 0 0 0 0 0
θ5,k 1 1 0.8 0.2 0 0 0 0
µ1,k 6 13 19.5 26 39 13 0 0
µ2,k 6 13 19.5 26 39 52 41 8
µ3,k 6 13 19.5 26 39 29 0 0
µ4,k 0 0 0 0 0 0 0 0
µ5,k 6 13 16 6 0 0 0 0

Fig. 4. Simulation: Packet successful transmission probabilities
and throughputs at different (channel,rate) pairs in a stationary
environment.

between the strength of received signal on each sub-
carrier and the probability of successful transmission
is calculated by the method presented in [5]. We con-
sider 5 channels with bandwidth 20 Mhz in the 2.4
GHz band centred at {2.4, 2.41, 2.42, 2.43, 2.44}GHz,
respectively. Each channel has 52 sub-carriers and
the packet size is 1500 bytes. We consider 8 avail-
able rates: {6, 13, 19.5, 26, 39, 52, 58.5, 65} Mbps, and a
transmitter-receiver pair with an average SNR of 20 dB.
The trace length is 600 seconds.

We first consider stationary environments, so that a
snapshot of the success probabilities for all (channel,rate)
pairs is drawn and kept constant throughout the simu-
lation. Fig.4 shows the packet successful transmission
probabilities and throughputs of different (channel,rate)
pairs. As announced, graphical unimodality holds: the
throughput on each channel is a unimodal function of
the rate, and given the optimal rate k?c on sub-optimal
channel c 6= c?, there exists another channel c′ 6= c
such that either µc′,k?c > µc,k?c or µc′,k?c+1 > µc,k?c .
Graphical unimodality results from the fact that we are
in a steep environment as defined in [14]. Fig.5 presents
the regret of KL-UCB and KL-UCB-U as a function
of time. KL-UCB-U beats KL-UCB and for large time
horizons the regret under KL-UCB-U is roughly half
of that under KL-UCB. Hence exploiting the graphical
unimodal structure significantly helps.

We now turn to non-stationary environments. As
in VIII-A, we present the best pair as a function of
time and the throughputs of different algorithms in Fig.6.
Again KL-UCB-U beats KL-UCB.

For both the test-bed and simulation, the performance
of KL-UCB-U is rather impressive: its throughput is at
least 95% of that of the Oracle, without knowing the
throughputs of the various (channel,rate) pairs before-
hand. This shows that given a good decision rule, the
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Fig. 5. Simulation: Regret of different decision rules as a function
of time in a stationary environment.
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Fig. 6. Simulation: throughputs of the various algorithms (above)
and the best pair (c?, k?) (below) as a function of time in a non-
stationary environment – low variation speed.

selection of channel and rate can be done solely based on
ACK/NACK feedback with excellent performance. This
is critical for real-world systems because feedback of
channel measurements is problematic in practice both in
terms of delay and overhead.

So far, in non-stationary environments, the packet suc-
cessful transmission probabilities were evolving slowly.
Next we vary the speed at which they evolve, by arti-
ficially accelerating our traces by a factor 20 and 100.
Results are presented in Fig. 7. At all speeds, KL-UCB-
U beats KL-UCB, and the performance gap between
the two algorithms increases with the speed. When the
environment changes faster, the performance of KL-
UCB becomes poor, as the algorithm needs to explore
all (channel, rate) pairs, and cannot track the best pair.
On the contrary, KL-UCB-U exploits the structure and
explores less, which makes its performance more robust.

Speed ×1 ×20 ×100

Static 52 % 45 % 43 %
KL-UCB 90 % 83 % 57 %

KL-UCB-U 96 % 91 % 79 %
Oracle 100 % 100 % 100 %

Fig. 7. Impact of the speed of variation of the successful transmis-
sion probabilities on performance in a non-stationary environment.

IX. CONCLUSION

In this paper, we have addressed the problem of joint
channel and rate adaptation in cognitive radio systems.
We have shown that the problem is equivalent to a
structured MAB problem, where the structure stems
from inherent properties of the throughput as a function
of the selected channel and rate. For several assump-
tions on this structure, we have derived fundamental
performance limits satisfied by any sequential (channel,
rate) selection algorithm. For each structure type, we
have also proposed algorithms which are either close
or achieve these limits. Finally we have assessed the
efficiency of the proposed algorithms through trace-
driven experiments and simulations. The two key insights
from our results are: (a) The channel and rate adaptation
problem has a strong structure. This structure can be
exploited to devise algorithms whose performance does
not depend on the number of available rates, and is
close to that of an Oracle algorithm that perfectly knows
the packet successful transmission probabilities at any
available (channel, rate) pair. (b) There exist readily
implementable algorithms which allow almost perfect
channel and rate selection without the need of any
measurement and explicit feedback of the quality of the
various channels.
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APPENDIX

PROOF OF THEOREM 2

We derive here the regret lower bounds for the MAB
problem (PU ). To this aim, we apply the techniques used
by Graves and Lai [26] to investigate efficient adaptive
decision rules in controlled Markov chains. We recall
here their general framework. Consider a controlled
Markov chain (Xt)t≥0 on a finite state space S with a
control set U . The transition probabilities given control
u ∈ U are parametrized by θ taking values in a compact
metric space Θ: the probability to move from state x
to state y given the control u and the parameter θ is
p(x, y;u, θ). The parameter θ is not known. The decision
maker is provided with a finite set of stationary control
laws G = {g1, . . . , gK} where each control law gj
is a mapping from S to U : when control law gj is
applied in state x, the applied control is u = gj(x). It
is assumed that if the decision maker always selects the
same control law g the Markov chain is then irreducible
with stationary distribution πgθ . Now the reward obtained
when applying control u in state x is denoted by r(x, u),
so that the expected reward achieved under control law
g is: µθ(g) =

∑
x r(x, g(x))πgθ(x). There is an optimal

control law given θ whose expected reward is denoted
µ?θ ∈ arg maxg∈G µθ(g). Now the objective of the
decision maker is to sequentially control laws so as to
maximize the expected reward up to a given time horizon
T . As for MAB problems, the performance of a decision
scheme can be quantified through the notion of regret
which compares the expected reward to that obtained by
always applying the optimal control law.

We now apply the above framework to our MAB
problem. For (PU ), for all c, the parameter θc takes
values in T ∩ U . The Markov chain has values in
S = {0, r1, . . . , rK}. The set of control laws is G =
{1, . . . , C} × {1, . . . ,K}. These laws are constant, in
the sense that the control applied by control law (c, k)
does not depend on the state of the Markov chain,
and corresponds to selecting (channel, rate) pair (c, k).
The transition probabilities are given as follows: for all
x, y ∈ S,

p(x, y; (c, k), θ) = p(y; (c, k), θ) =

{
θck, if y = rk,
1− θck, if y = 0.

Finally, the reward r(x, (c, k)) does not depend on the
state and is equal to rkθck, which is also the expected
reward obtained by always using control law (c, k).

We now fix θ: ∀c, θc ∈ T ∩ U . Define I(c,k)(θ, λ) =
I(θck, λck) for any (c, k). Further define the set B(θ)
consisting of all bad parameters λ: ∀c, λc ∈ T ∩U such
that (c?, k?) is not optimal under parameter λ, but which
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are statistically indistinguishable from θ:

B(θ) = {λ : ∀c,λc ∈ T ∩ U ,
λc?k? = θc?k? ,max

(c,k)
rkλck > µ?},

B(θ) can be written as the union of sets Bck(θ) defined
as:

Bck(θ) = {λ ∈ B(θ) : rkλck > rk?λc?k?}.

Note that Bck(θ) = ∅ if rk < rk?θc?k? , hence if k /∈ N .
By applying Theorem 1 in [26], we know that cU (θ)

is the minimal value of the following LP:

min
∑

c,k αck(µ
? − rkθck) (6)

s.t. infλ∈B(θ)

∑
(c,k)6=(c?,k?) αckI

(c,k)(θ, λ) ≥ 1, (7)

αck ≥ 0, ∀(c, k). (8)

Next we detail the constraints (7). These constraints
are equivalent to:

inf
λ∈Bc?k(θ)

∑
(c,l)6=(c?,k?)

αclI
(c,l)(θ, λ) ≥ 1, ∀k 6= k? (9)

inf
λ∈Bck?c (θ)

∑
(c′,l)6=(c?,k?)

αc′lI
(c′,l)(θ, λ) ≥ 1,∀c 6= c? (10)

inf
λ∈Bck(θ)

∑
(c′,l)6=(c?,k?)

αc′lI
(c′,l)(θ, λ) ≥ 1,∀c 6= c?, ∀k 6= k?c .

(11)

Constraint (9). We prove that (9) is equivalent to:

min
k∈M

αc?kI(θc?k,
µ?

rk
) ≥ 1. (12)

Observe that if k < k0 (i.e., if k /∈ N ), then Bc?k(θ) = ∅.
Let k ∈ N with k 6= k?. Without loss of generality
assume that k > k?. We prove that:

inf
λ∈Bc?k(θ)

∑
(c,l) 6=(c?,k?)

αclI
(cl)(θ, λ) =

k∑
l=k?+1

αc?lI(θc?l,
µ?

rl
).

(13)
This is due to the fact that we can always choose λcl =
θcl for all c 6= c?, and to the following two observations:

• for all λ ∈ Bc?k(θ), we have λc?k?rk? = θc?k?rk?

and λc?krk > λc?k?rk? , which using the unimodal-
ity of λ, implies that for any l ∈ {k?, . . . , k},
λc?lrl ≥ θc?k?rk? . Hence:∑

l 6=k?
αc?lI

(c?,l)(θ, λ) ≥
k∑

l=k?+1

αc?lI(θl,
µ?

rl
).

• For ε > 0, define λε as follows: for all l ∈
{k?, . . . , k}, λc?l = (1 + (l − k?)ε)µ

?

rl
, and for

all l /∈ {k?, . . . , k}, λc?l = θc?l. By construction,

λε ∈ Bc?k(θ), and

lim
ε→0

∑
l 6=k?

αc?lI
(c?,l)(θ, λε) =

k∑
l=k?+1

αc?lI(θl,
µ?

rl
).

From (13), we deduce that constraints (7) are equiv-
alent to (12) (indeed, only the constraints related to
k ∈M are really active, and for k ∈M , (7) is equivalent
to αc?kI(θc?k,

µ?

rk
) ≥ 1).

Constraint (10). Note that if k?c < k0, then Bck?c (θ) = ∅.
Assume that k?c ≥ k0. When λ ∈ Bck?c (θ), the optimal
(channel, rate) pair under λ is (c, k?c ). This implies that
rk?cλck?c ≥ µ

?, and so:∑
(c′,l)6=(c?,k?)

αc′lI
(c′,l)(θ, λ) ≥ αck?c I(θck?c ,

µ?

rk?c
).

Now select λε as follows: λc′k = θc′k for all (c′, k) 6=
(c, k?c ), and λck?c = µ?/rk?c + ε. Then λε ∈ Bck?c (θ) for
all ε > 0, and

lim
ε→0

∑
(c′,l)6=(c?,k?)

αc′lI
(c′,l)(θ, λ) = αck?c I(θck?c ,

µ?

rk?c
).

We conclude that (10) is equivalent to:

∀c 6= c?, αck?c I(θck?c ,
µ?

rk?c
) ≥ 1k?c≥k0 .

Constraint (11). For k < k0, Bck(θ) = ∅. Assume that
k ≥ k0 and k 6= k?c . Then

∑
(c′,l)6=(c?,k?) αc′lI

(c′,l)(θ, λ)
is minimized over Bck(θ) when for all c′ 6= c
and all k, λc′k = θc′k, and is actually equal to:
infλc∈Ck

∑
l αclI(θcl, λcl). Unfortunately, the above op-

timization problem cannot be further reduced. �

PROOF OF THEOREM 3

For λ: ∀c, θc ∈ T ∩ U and α ∈ RC×K+ , we define:

D(θ, λ, α) =
∑
c,k

αckI(θck, λck).

As defined previously, the “bad parameter set” is:

B(θ) = {λ ∈ T ∩U : λc?k? = θc?k? , max
(c,k)

rkλck > µ?}.

Further define the set:

C = {α ∈ RC×K+ : inf
λ∈B(θ)

D(θ, λ, α) ≥ 1}.

cU (θ) in Theorem 2 is the solution to a minimization
problem over C . An upper bound of cU (θ) is obtained
by choosing α ∈ C and by computing the value of the
objective function at α which is

∑
c,k αck(µ

?−µck). We
prove that if we define α as:
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• αc?k = 1/I(θc?k,
µ?

rk
) if k ∈M ,

• αck?c = (min{I(θck?c ,
µ?

rk?c
), I(θck?c , θck?c −

δc
rk?c

)})−1

if c 6= c?,
• αck = 1/I(θck, θck + δc

rk
) if c 6= c? and k ∈Mc,

• αck = 0 if c 6= c? and k /∈Mc ∪ {k?c}.

then α ∈ C. To do so, we use the following decomposi-
tion: B(θ) = ∪(c,k)6=(c?,k?)Bck(θ) where

Bck(θ) = {λ ∈ B(θ) : (c, k) ∈ arg max
(c′,k′)

rk′λc′k′}.

(i) If λ ∈ ∪k 6=k?Bc?k(θ). Since λ ∈ ∪k 6=k?Bc?k(θ), we

have θc?k? = λc?k? . Since k 7→ rkλc?k is unimodal, and
k? /∈ arg maxk rkλc?k, then there must exist a neighbour
k′ of k? such that rk′λc?k′ ≥ rk?λc?k? = rk?θc?k? = µ∗.
Hence λc?k′ ≥ µ∗/rk′ . Using the monotonicity of the
KL divergence:

D(θ, λ, α) ≥ αc?k′I(θc?k′ , λc?k′)

≥ αc?k′I(θc?k′ , µ
∗/rk′)

≥ 1.

(ii) If λ ∈ ∪kBck(θ) , c 6= c?. Under parameter λ, let

k̃ = arg maxk rkλck be the optimal rate for channel c.
We further consider two cases depending on whether k̃
is equal to k?c .
Case (a): k̃ = k?c . Then λ ∈ Bck?c (θ), and we have
rk?cλck?c ≥ µ

?. Hence:

D(θ, λ, α) ≥ αck?c I(θck?c , λck?c )

≥ αck?c I(θck?c , µ
?/rk?c )

≥ 1.

Case (b): k̃ 6= k?c . Since k 7→ rkλck is unimodal and
k?c 6= arg maxk rkλck, there must exist a neigbour k′

of k?c such that rk′λck′ ≥ rk?cλck?c . Since k 7→ rkθck is
unimodal and k?c = arg maxk rkθck, we have rk?c θck?c ≥
rk′θck′ . Therefore:

max(rk?c |λck?c − θck?c |, rk′ |λck′ − θck′ |)
≥ (rk?c θck?c − rk′θck′)/2 ≥ δc.

To establish the above inequality, we have used the fact
that for all a, b > 0 and for all x ∈ R, max(|x|, |x +
a + b|) ≥ (a + b)/2, and have applied this result for
x = rk?c (λck?c − θck?c ), a = rk′λck′ − rk?cλck?c , and b =
rk?c θck?c − rk′θck′ . We have shown that:

either (b1) rk?c |λck?c − θck?c | ≥ δc;
or (b2) rk′ |λck′ − θck′ | ≥ δc.

If (b1) holds, then either λck?c ≤ θck?c − δc/rk?c or λck?c ≥

θck?c + δc/rk?c . In the latter case, we have:

λck′ ≥
rk?c
rk′

λck?c ≥
rk?c
rk′

θck?c +
δc
rk′

≥ θck′ +
δc
rk′
.

If (b2) holds, then either λck′ ≥ θck′ + δc/rk′ , or λck′ ≤
θck′ − δc/rk′ . In the latter case, we have:

λck?c ≤
rk′

rk?c
λck′ ≤

rk′

rk?c
θck′ −

δc
rk?c

≤ θck?c −
δc
rk?c

.

In both cases (b1) and (b2), we have proved that either
λck?c ≤ θck?c − δc/rk?c or λck′ ≥ θck′ + δc/rk′ . Finally:

D(θ, λ, α) ≥ αck?c I(θck?c , λck?c ) + αck′I(θck′ , λck′)

≥ max{αck?c I(θck?c , θck?c −
δc
rk?c

),

αck′I(θck′ , θck′ +
δc
rk′

)}

≥ 1.

We have proved that infλ∈B(θ)D(θ, λ, α) ≥ 1, and
thus α ∈ C. Now for our choice of α, the value of
the objective function of the optimization problem in
Theorem 2 is c′u(θ). We conclude that cU (θ) ≤ c′U (θ).
�

PROOF OF THEOREM 6

Let π = CRS-T . We denote by rπ(T ) the sample
path regret under CRS-T up to time T :

rπ(T ) = µ? −
∑
c,k

µcktck(T ),

so that Rπ(T ) = E[rπ(T )].
Define ∆ = min(c,k),(c′,k′):µck 6=µc′k′ |µck − µc′k′ | the
minimal separation between two decisions. The proof
consists in two steps. In the first step, we provide an
upper bound of the sample path regret. In the second
step, we establish that lim supt→∞

Rπ(T )
log(T ) < ∞, and

apply the dominated convergence theorem to conclude.

Step 1. Fix a sample path (for the successive rewards
obtained under CRS-T ). By design of CRS-T , tck(n)→
∞ , n → ∞ a.s. (since when tck(n) < log(log(n)),
decision (c, k) is taken). Hence µ̂ck(n)→ µck a.s. by the
law of large numbers. Let δ < ∆/2 – the choice of δ will
be made more precise later. There exists n0 ≥ 1 (that
depends on δ) such that for all n ≥ n0, |µ̂ck(n)−µck| ≤
δ for all (c, k). As a consequence, for n ≥ n0, for any
channel c, the leader lc(n) corresponds to the best rate
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k?c . Also observe that for n ≥ n0, for all k ∈ N(k?c ),
δck(n) > 0. Hence we cannot have Uc(n) = −1, and
Uc(n) ∈ {0, 1}.

Next, we provide an upper bound of tck(n) for all
(c, k) 6= (c?, k?).
(a) For any channel c, let k /∈ N(k?c ). When n ≥ n0, for
all n′ ∈ {n0, . . . n}, decision (c, k) is selected for the
(n′ + 1)-th transmission only if tck(n′) < log(log(n′)).
We simply deduce that:

tck(n) ≤ n0 + log(log(n)).

(b) For any channel c, let k ∈ N(k?c ). Let n ≥ n0, and
n′ ∈ {n0, . . . , n}. To ease the presentation, we define
the following quantity:

τck(δ) =
α(r2

k + r2
k?c

)

2(µck?c − µck − 2δ)2
.

Assume that:

tck(n
′) ≥ log(n)τck(δ).

There are two possibilities: if tck?c (n
′) < log(n)τck(δ),

then (c, k) is not selected for transmission at
n′′ except if tck(n

′′) < log(log(n′′)), since the
selected decision (c, k)(n′′) must be included in
arg mink′∈Vc(n′′)(n′′) tc(n′′)k′(n

′′) (remember that if
Uc(n

′′) = 1 then the index of (c, k) is equal to 0, and
(c, k) is not selected). If tck?c (n

′) ≥ log(n)τck(δ), then:

min(tck(n
′), tck?c (n

′)) ≥ log(n)τck(δ).

From there, we deduce that:

δck(n
′′) ≤

√
α log(n′′)

r2
k + r2

k?c

2 log(n)τck(δ)

≤ µck?c − µck − 2δ.

Hence δck(n′′) − δck(n′′) > 0 for all n′′ ∈ {n′, . . . , n}.
Thus k /∈ Vc(n′′), and (c, k) is not selected at for
the transmissions in {n′, . . . , n}, except if tck(n′′) <
log(log(n′′)). We deduce that:

tck(n) ≤ n0 + log(log(n)) + log(n)τck(δ).

(c) If c 6= c?, k = k?c , using the same reasoning as
above:

tck(n) ≤ n0 + log(log(n))

+ log(n) max

(
1

I(µck+δ
rk

, µ
?−δ
rk

)
, max
k∈N(k?c )

τck(δ)

)
.

Now using the continuity of the KL divergence, for
any ε > 0, we can choose δ > 0 such that for all n ≥ n0

(note that n0 depends on ε), almost surely:

For all c, and all k /∈ N(k?c ),

tck(n) ≤ n0 + log(log(n));

for all c, and all k /∈ N(k?c ),

tck(n) ≤ n0 + log(log(n)) + log(n)(τck + ε);

for all c 6= c?, k = k?c ,

tck(n) ≤n0 + log(log(n))

+ log(n)

[
max

( 1

I(µckrk ,
µ?

rk
)
, max
k∈N(k?c )

τck
)

+ ε

]
.

We conclude that, almost surely:

lim sup
T→∞

rπ(T )

log(T )
≤ cCRS-T (θ).

Step 2. The following lemma ensures that the average
regret is bounded:

Lemma 1: Under algorithm CRS-T , the regret is
upper-bounded uniformly by:

sup
T→∞

Rπ(T )

log(T )
< +∞

Combining the results of step 1 and of the above lemma,
we complete the proof of Theorem 6 by simply applying
the dominated convergence theorem. �

Proof of Lemma 1. We decompose the set of instants
{1, . . . , T} at which we may play a sub-optimal (chan-
nel, rate) pair as follows. We define the following sets:

• A = {1 ≤ n ≤ T : minck tck(n) < log(log(n))},
the set of instants at which there exists a decision
which has not been selected log(log(n)).

• B = ∪ckBck, where
Bck = {1 ≤ n ≤ T : c(n) = c, lc(n) = k, Uc(n) =
0} is the set of instants at which k is the leader for
channel c, channel c is selected and there are not
enough samples to determine whether k is better
than all its neighbours.

• D = ∪cD1
c ∪D−1

c , where
D1
c = {1 ≤ n ≤ T : lc(n) 6= k?c , Uc(n) = 1},

D−1
c = {1 ≤ n ≤ T : lc(n) = k?c , Uc(n) = −1}.

D1
c ∪Dc−1 are the set of the instants at which the

test fails for channel c: Either we believe that lc(n)
is k?c when it is not the case (D1

c ), or we believe that
lc(n) is different from k?c when the two are equal
(D−1

c ).
• E = ∪(c,k)6=(c?,k?)Eck, where
Eck = {1 ≤ n ≤ T, qck(n) < µck} is the set
of instants at which for the pair (c, k), the upper
confidence bound bck(n) underestimates the actual
average reward µck.
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• F = ∪(c,k) 6=(c?,k?)Fck, where
Fck = {1 ≤ n ≤ T,U(n) = ∅, n /∈ A ∪ D ∪
E, (c, k)(n) = (c, k)}. F is the set of instants at
which the test has returned a correct answer for
all channels, the average rewards are not under-
estimated, and yet the sub-optimal rate (c, k) is
selected.

We have:

Rπ(T ) ≤ rK(E[|A|] + E[|B|] + E[|D|]
+ E[|E|] + E[|F |]).

Next we bound the expected size of sets A, B, D, E
and F .
Upper bound of E[|A|]. By design of CRS-T , if n ∈ A
then the pair (c, k) which has been the least tried is
selected, so that E[A] ≤ CK log(log(T )).

Upper bound of E[|B|]. Let n ∈ Bck, and define s =∑n
n′=1 1{n′ ∈ Bck}. Then for all k′ ∈ N(k) ∪ {k},

tck′(n) ≥ s/(γ + 1) since when n ∈ Bck, the selected
rate is the rate which has been played the least among
k and its neighbours on channel c. We recall that
infk′∈N(k) |µck − µck′ | > ∆. Since n ∈ Bck, we have
Uc(n) = 0 and lc(n) = k so there must exist k′ ∈ N(k)
such that δck′(n) ∈ [−δck′(n), δck′(n)]. Define

s0 = 4α log(T )r2
K(γ + 1)∆−2.

Let s > s0. Then we have that δck′(n) ≤ ∆/2.
First consider the case where µck > µck′ . We have
µck − µck′ ≥ ∆ ≥ 2δck′(n), and δck′(n) − δck′(n) ≤ 0.
Therefore we have:

δck′(n) ≤ (µck − µck′)− δck′(n).

Applying the second inequality of Lemma 3 (presented
at the end of the proof), we deduce:

P[δck′(n) ≤ (µck − µck′)− δck′(n)] ≤ n−α.

The case µck < µck′ is treated similarly, and we have
proved that:

P[n ∈ Bck, s ≥ s0] ≤ C0n
−α,

for some constant C0. Using the fact that
∑T

n=1 1{n ∈
Bck, s ≤ s0} ≤ s0:

E[|Bck|] ≤ s0 +

T∑
n=1

P[n ∈ Bck, s ≥ s0]

≤ s0 +

T∑
n=1

C0n
−α = O(log(T )).

Hence E[|B|] ≤ O(log(T )).

Upper bound of E[|D|]. Let n ∈ D1
c . Since lc(n) 6= k?c ,

and Uc(n) = 1, there must exist a couple (k, k′) such
that k = lc(n), k′ ∈ N(k), µkc−µk′c < 0 and δck′(n)−
δck′(n) > 0. Applying the first inequality of Lemma 3:

P[δck′(n)− δck′(n) > 0] ≤
P[δck′(n) ≥ (µkc − µk′c) + δck′(n)] ≤ n−α.

Applying the union bound, we get P[n ∈ D1
c ] ≤

C1n
−α for some constant C1. By symmetry we have

that P[n ∈ D−1
c ] ≤ C1n

−α. Therefore E[|Dc|] = O(1)
and E[|D|] = O(1).

Upper bound of E[|E|]. In veiw of Lemma 2 (presented
below), E[|Eck|] = O(log(log(T ))), so that E[|E|] =
O(log(log(T )).

Upper bound of E[|F |]. Let n ∈ Fck. Since U(n) = ∅
and n /∈ A, and (c, k)(n) = (c, k), we must have that
(c, k) ∈ arg maxck bck(n).
• If Uc?(n) = 1 , then lc?(n) = k? because n /∈ D

and so bc?k?(n) = qc?k?(n).
• If Uc?(n) = −1, then bc?k?(n) = qc?k?(n) by

design.
Because n /∈ E, we have qc?k? ≥ µ?. Hence bck(n) ≥
µ?. Following the same reasoning as [21], we prove that:

E[|Fck|] ≤
T∑
n=1

1{(c, k)(n) = (c, k), bck(n) ≥ µ?}

≤ log(T )

I(θck, µ∗/rk)
+ o(log(T )) = O(log(T )).

So E[|F |] = O(log(T )). This concludes the proof of
Lemma 1. �

The following lemma is proved in [21].
Lemma 2: There exists a constant κ such that for all

(c, k), E[
∑T

n=1 1{bck(n) < µck}] ≤ κ log(log(T )).

Lemma 3 follows from the Azuma-Hoeffding inequal-
ity.

Lemma 3: We have, for all n and c, c′, k, k′,

P[µ̂ck(n)− µ̂c′k′(n) ≥ µck − µc′k′

+

√
α log(n)

2

(
r2
k

tck(n)
+

r2
k′

tc′k′(n)

) ≤ n−α
and by symmetry:

P[µ̂ck(n)− µ̂c′k′(n) ≤ µck − µc′k′

−

√
α log(n)

2

(
r2
k

tck(n)
+

r2
k′

tc′k′(n)

) ≤ n−α


