A summary of "Deep Learning without Poor Local Minima"

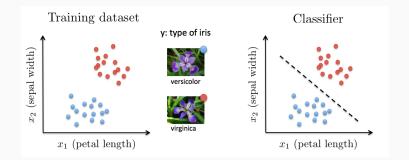
by Kenji Kawaguchi

MIT - oral presentation at NIPS 2016

Learning

Supervised (or Predictive) learning

Learn a mapping from inputs x to outputs y, given a labeled set of input-ouput pairs (the training set) $D_n = \{(X_i, Y_i), i = 1, ..., n\}$



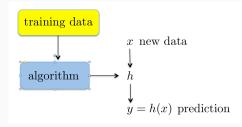
We learn the classification function f = 1 if versicolor, f = -1 if virginica

Supervised learning

- Training set: $D_n = \{(X_i, Y_i), i = 1, ..., n\}$
 - Input features: $X_i \in \mathbb{R}^d$
 - Output: Y_i

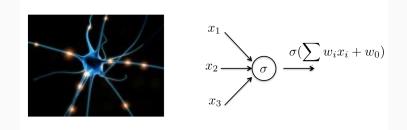
 $Y_i \in \mathcal{Y} \begin{cases} \mathbb{R} & \text{regression (price, position, etc)} \\ \text{finite} & \text{classification (type, mode, etc)} \end{cases}$

- y is a non-deterministic and complicated function of x i.e., y = f(x, z) where z is unknown (e.g. noise). Goal: learn f.
- Learning algorithm:



- Empirical risk: $\hat{R}(f) := \frac{1}{n} \sum_{i=1}^{n} \|f(X_i) Y_i\|_2^2$.
- Look for the mapping in a class of functions \mathcal{F} that minimizes the risk (or a regularized version of it):

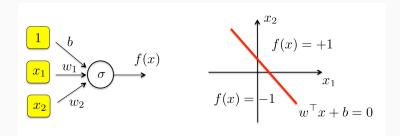
$$f^{\star} \in \arg\min_{f \in \mathcal{F}} \hat{R}(f).$$



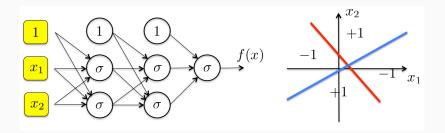
Loosely inspired by how the brain works¹. Construct a network of simplified neurones, with the hope of approximating and learning any possible function

¹Mc Culloch-Pitts, 1943

The first artificial neural network with one layer, and $\sigma(x) = \operatorname{sgn}(x)$ (classification) Input $x \in \mathbb{R}^d$, output in $\{-1, 1\}$. Can represent separating hyperplanes.

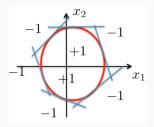


They can represent any function of \mathbb{R}^d to $\{-1,1\}$



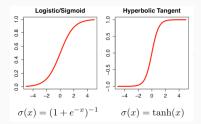
 \dots but the structure depends on the **unknown** target function f, and is difficult to optimise

... and the number of layers can rapidly grow with the complexity of the function



A key idea to make neural networks practical: soft-thresholding ...

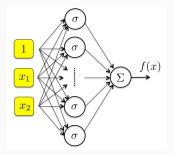
Replace hard-thresholding function σ by smoother functions



Theorem (Cybenko 1989) Any continuous function f from $[0,1]^d$ to \mathbb{R} can be approximated as a function of the form: $\sum_{j=1}^{N} \alpha_j \sigma(w_j^\top x + b_j)$, where σ is any sigmoid function.

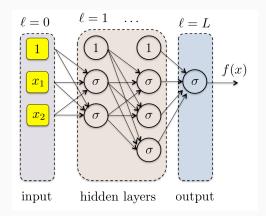
Soft-thresholding

Cybenko's theorem tells us that $f\ {\rm can}\ {\rm be}\ {\rm represented}\ {\rm using}\ {\rm a}\ {\rm single}\ {\rm hidden}\ {\rm layer}\ {\rm network}\ \ldots$



A non-constructive proof: how many neurones do we need? Might depend on $f\ \ldots$

A feedforward layered network (deep learning = enough layers)

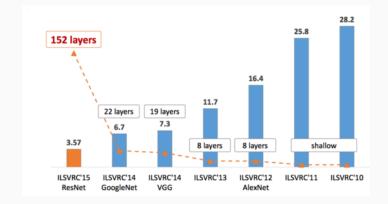


Deep learning outperformed any other techniques in all major machine learning competitions (image classification, speech recognition and natural language processing)

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC).

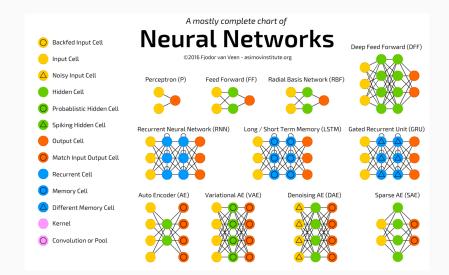
- 1. Training: 1.2 million images (227 \times 227), labeled one out of 1000 categories
- 2. Test: 100.000 images (227×227)
- 3. Error measure: The teams have to predict 5 (out of 1000) classes and an image is considered to be correct if at least one of the predictions is the ground truth. 2

ILSVR challenge

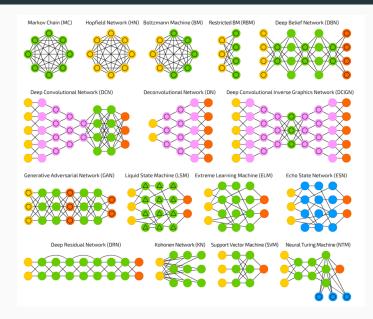


¹From Stanford CS231n lecture notes

Architectures



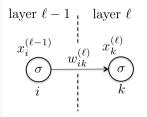
Architectures



Computing with neural networks

- Layer 0: inputs $x = (x_1^{(0)}, \dots, x_d^{(0)})$ and $x_0^{(0)} = 1$
- Layer $1,\ldots,L-1$: hidden layer $\ell,\,d^{(\ell)}+1$ nodes, state of node $i,\,x_i^{(\ell)}$ with $x_0^{(\ell)}=1$

• Layer L: output
$$y = x_1^{(L)}$$



Signal at k: $s_k^{(\ell)} = \sum_{i=0}^{d^{(\ell-1)}} w_{ik}^{(\ell)} x_i^{(\ell-1)}$ State at k: $x_k^{(\ell)} = \sigma(s_k^{(\ell)})$ Output: the state of $y = x_1^{(L)}$ The output of the network is a function of $\mathbf{w} = (w_{ij}^{(\ell)})_{i,j,\ell}$: $y = f_{\mathbf{w}}(x)$ We wish to optimise over \mathbf{w} to find the most accurate estimation of the target function

Training data: $(X_1, Y_1), ..., (X_n, Y_n) \in \mathbb{R}^d \times \{-1, 1\}$

Objective: find w minimising the empirical risk:

$$E(\mathbf{w}) := R(f_{\mathbf{w}}) = \frac{1}{2n} \sum_{l=1}^{n} |f_{\mathbf{w}}(X_l) - Y_l|^2$$

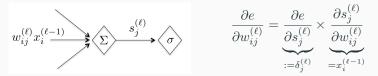
 $E(\mathbf{w}) = \frac{1}{2n} \sum_{l=1}^{n} E_l(\mathbf{w})$ where $E_l(\mathbf{w}) := |f_{\mathbf{w}}(X_l) - Y_l|^2$ In each iteration of the SGD algorithm, only one function E_l is considered ...

Parameter. learning rate $\alpha > 0$

- 1. Initialization. $\mathbf{w} := \mathbf{w}_0$
- 2. Sample selection. Select l uniformly at random in $\{1, \ldots, n\}$
- 3. **GD iteration.** $\mathbf{w} := \mathbf{w} \alpha \nabla E_l(\mathbf{w})$, go to 2.

Is there an efficient way of computing $E_l(\mathbf{w})$?

We fix l, and introduce $e(\mathbf{w}) = E_l(\mathbf{w})$. Let us compute $\nabla e(\mathbf{w})$:



The sensitivity of the error w.r.t. the signal at node $j\ {\rm can}\ {\rm be\ computed}\ {\rm recursively}\ \ldots$

Backward recursion

Output layer.
$$\delta_1^{(L)} := \frac{\partial e}{\partial s_1^{(L)}}$$
 and $e(\mathbf{w}) = (\sigma(s_1^{(L)}) - Y_l)^2$
$$\delta_1^{(L)} = 2(x_1^{(L)} - Y_l)\sigma'(s_1^{(L)})$$

From layer ℓ to layer $\ell - 1$.

$$\delta_i^{(\ell-1)} := \frac{\partial e}{\partial s_i^{(\ell-1)}} = \sum_{j=1}^{d^{(\ell)}} \underbrace{\frac{\partial e}{\partial s_j^{(\ell)}}}_{:=\delta_j^{(\ell)}} \times \underbrace{\frac{\partial s_j^{(\ell)}}{\partial x_i^{(\ell-1)}}}_{=w_{ij}^{(\ell)}} \times \underbrace{\frac{\partial x_i^{(\ell-1)}}{\partial s_i^{(\ell-1)}}}_{=\sigma'(s_i^{(\ell-1)})}$$

Summary.

$$\frac{\partial E_l}{\partial w_{ij}^{(\ell)}} = \delta_j^{(\ell)} x_i^{(\ell-1)}, \quad \delta_i^{(\ell-1)} = \sum_{j=1}^{d^{(\ell)}} \delta_j^{(\ell)} w_{ij}^{(\ell)} \sigma'(s_i^{(\ell-1)}) = \sum_{j=1}^{d^{(\ell)}} \delta_j^{(\ell)} w_{ij}^{(\ell)} \sigma'(s_i^{(\ell)}) = \sum_{j=1}^{d^{(\ell)}} \delta_j^{(\ell)} w_{ij$$

Parameter. Learning rate $\alpha > 0$ Input. $(X_1, Y_1), \dots, (X_n, Y_n) \in \mathbb{R}^d \times \{-1, 1\}$

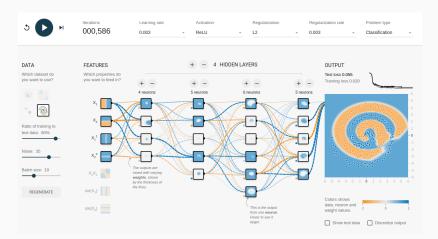
- 1. Initialization. $\mathbf{w} := \mathbf{w}_0$
- 2. Sample selection. Select l uniformly at random in $\{1,\ldots,n\}$
- 3. Gradient of E_l .

•
$$x_i^{(0)} := X_{li}$$
 for all $i = 1, ... d$

- Forward propagation: compute the state and signal at each node $(x_i^{(\ell)},s_i^{(\ell)})$
- Backward propagation: propagate back Y_l to compute $\delta_i^{(\ell)}$ at each node and the partial derivative $\frac{\partial E_l}{\partial w^{(\ell)}}$
- 4. **GD iteration.** $\mathbf{w} := \mathbf{w} \alpha \nabla E_l(\mathbf{w})$, go to 2.

Example: tensorflow

http://playground.tensorflow.org/



Critical question: The SGD algorithm will converge to a global minimum of the risk, if we can guarantee that local minima have the same risk as a global minimum. What does the loss surface look like?

Related work:

- P. Baldi, K. Hornik. Neural Networks and PCA: Learning from Examples without Local Minima. *Neural Networks*, 1989.
- I. Goodfellow, Y. Bengio, A. Courville. Deep Learning, http://www.deeplearningbook.org
- A. Choromanska et al.. The Loss Surface of Multilayer Networks. ICML 2015.

Notations

- Data: $X_i \in \mathbb{R}^{d_x}$, $Y_i \in \mathbb{R}^{d_y}$, m data points X: $d_x \times m$ matrix whose columns are the X_i 's Y: $d_y \times m$ matrix whose columns are the Y_i 's
- H hidden layers
- Layer k with d_k neurons, input weight matrix $W_k \in \mathbb{R}^{d_k \times d_{k-1}}$
- $p = \min\{d_1, \ldots, d_H\}$
- Output:

 $\hat{Y}(W,X) = q\sigma_{H+1}(W_{H+1}\sigma(W_H\sigma(W_{H-1}\ldots\ldots\sigma(W_2\sigma(W_1X)\ldots)$

Linear activation function: $\hat{Y}(W, X) = W_{H+1} \dots W_1 X$.

- Linear regression: fitting a linear model to the data. $X_i \in \mathbb{R}^{d_x}$, $Y_i \in \mathbb{R}^{d_y}$. Find the matrix $L^* \in \mathbb{R}^{d_y \times d_x}$ minimizing $\mathcal{L}(L) = \sum_{i=1}^m ||Y_i - LX_i||_2^2$. When XX^{\top} is invertible, L is equal to $L^* = YX^{\top}(XX^{\top})^{-1}$. Convexity of \mathcal{L} .
- Now in a 1-hidden layer network, we are looking for L that can be factorized as W_2W_1 where $W_1 \in \mathbb{R}^{p \times d_x}$ and $W_2 \in \mathbb{R}^{d_y \times p}$. In particular the rank of L is at most p. Non uniqueness: $W'_1 = CW_1$ and $W'_2 = W_2C^{-1}$ work as well.

Baldi-Hornik: 1-hidden linear networks

Define the d_y × d_y matrix Σ = YX^T(XX^T)⁻¹XY^T (covariance matrix of the best unconstrained linear approximation of Y).
d_x = d_y.

Theorem (Baldi-Hornik 1989) Assume that Σ is full rank, and has d_y distinct eigenvalues $\lambda_1 > \ldots > \lambda_{d_y}$. Let W_1 and W_2 define a critical point of $\mathcal{L}(W_1, W_2)$. Then there exists a subset Γ of p (orthonormal) eigenvectors of Σ , and a $p \times p$ invertible matrix C such that:

$$W_2 = U_{\Gamma}C, \quad W_1 = C^{-1}U_{\Gamma}^{\top}YX^{\top}(XX^{\top})^{-1},$$

where U_{Γ} is the matrix formed by the eigenvectors in Γ . Moreover $\mathcal{L}(W_1, W_2) = \operatorname{trace}(YY^{\top}) - \sum_{i \in \Gamma} \lambda_i$. **Theorem (Baldi-Hornik 1989)** Assume that Σ is full rank, and has d_y distinct eigenvalues $\lambda_1 > \ldots > \lambda_{d_y}$. Let W_1 and W_2 define a critical point of $\mathcal{L}(W_1, W_2)$. Then there exists a subset Γ of p (orthonormal) eigenvectors of Σ , and a $p \times p$ invertible matrix C such that:

$$W_2 = U_{\Gamma}C, \quad W_1 = C^{-1}U_{\Gamma}^{\top}YX^{\top}(XX^{\top})^{-1},$$

where U_{Γ} is the matrix formed by the eigenvectors in Γ . Moreover $\mathcal{L}(W_1, W_2) = \operatorname{trace}(YY^{\top}) - \sum_{i \in \Gamma} \lambda_i$.

Up to C, the global minimizer is unique, and is the projection on the subspace spanned by the p top eigenvectors of Σ of the ordinary least square regression matrix!

Taking an other set of eigenvectors for the projection yields a saddle point.

Theorem (Kawaguchi 2016) Assume that XX^{\top} and XY^{\top} are full rank, $d_x \ge d_y$. Assume that Σ is full rank, and has d_y distinct eigenvalues. The loss function $\mathcal{L}(W_1, \ldots, W_{H+1})$ satisfies:

- (i) it is non-convex and non-concave.
- (ii) Every local minimum is a global minimum.
- (iii) Every critical point that is not a minimum is a saddle point.
- (iv) If $rank(W_H, \ldots, W_2) = p$, then the Hessian at any saddle point has at least one strictly negative eigenvalue.

Assume that W is a critical point and a local minimum, and that ${\rm rank}(W_H\ldots W_2)=p$

- Necessary conditions: $\nabla \mathcal{L} = 0$ and $\nabla^2 \mathcal{L}$ positive semidefinite.
- From the latter conditions, we deduce that $X(\hat{Y}(W,X) Y)^{\top} = 0.$
- Go back to the unconstrained linear case: $f(W') = ||W'X Y||_F^2$ for $W' \in \mathbb{R}^{d_y \times d_x}$. Let $r' = (W'X - Y)^\top$ denote the error matrix. By convexity, if Xr' = 0 then W' is a global minimizer of f. Now with $W' = W_{H+1} \dots W_1$, we have Xr = Xr' = 0, and hence W' is a global minimizer of f.

Rectified linear activation function: $\sigma(x) = \max(0, x)$. Output:

 $\hat{Y}(W,X) = q\sigma_{H+1}(W_{H+1}\sigma(W_H\sigma(W_{H-1}\ldots\sigma(W_2\sigma(W_1X)\ldots)$

An other way of writing the output:

$$\hat{Y}(W,X) = q \sum_{i=1}^{d_x} \sum_{j=1}^{\gamma} X_{i,j} A_{i,j} \prod_{k=1}^{H} W_{i,j}^{(k)},$$

where the first sum is voer the input coordinates, the second sum is on the path from the *i*-th input to the output, $X_{i,j} = X_{i,1}$ for all *j* is the *i*-th input, and $A_{i,j}$ is the activation (binary variable) of the path *j* for input *i*

Critical simplification: the $A_{i,j}$'s are independent Bernoulli r.v. with mean ρ ! Under this assumption (among others), there is an equivalence with a linear network.

The previous theorem holds ...

 SGD could well find global minimizer of the empirical risk, under some conditions \ldots

What is the impact of regularization?

What about other activation functions?