
A summary of

”Deep Learning without Poor Local Minima”

by Kenji Kawaguchi

MIT – oral presentation at NIPS 2016

Learning

Supervised (or Predictive) learning

Learn a mapping from inputs x to outputs y, given a labeled set

of input-ouput pairs (the training set)

Dn = {(Xi, Yi), i = 1, . . . , n}

We learn the classification function f = 1 if versicolor, f = −1 if virginica

1

Supervised learning

• Training set: Dn = {(Xi, Yi), i = 1, . . . , n}
- Input features: Xi ∈ Rd

- Output: Yi

Yi ∈ Y

{
R regression (price, position, etc)

finite classification (type, mode, etc)

• y is a non-deterministic and complicated function of x

i.e., y = f(x, z) where z is unknown (e.g. noise). Goal: learn f .

• Learning algorithm:

2

Objectives

• Empirical risk: R̂(f) := 1
n

∑n
i=1 ‖f(Xi)− Yi‖22.

• Look for the mapping in a class of functions F that minimizes the

risk (or a regularized version of it):

f? ∈ arg min
f∈F

R̂(f).

3

Neural networks

Loosely inspired by how the brain works1. Construct a network of

simplified neurones, with the hope of approximating and learning any

possible function

1Mc Culloch-Pitts, 1943

4

The perceptron

The first artificial neural network with one layer, and σ(x) = sgn(x)

(classification)

Input x ∈ Rd, output in {−1, 1}. Can represent separating hyperplanes.

5

Multilayer perceptrons

They can represent any function of Rd to {−1, 1}

... but the structure depends on the unknown target function f , and is

difficult to optimise

6

From perceptrons to neural networks

... and the number of layers can

rapidly grow with the complexity

of the function

A key idea to make neural networks practical: soft-thresholding ...

7

Soft-thresholding

Replace hard-thresholding function σ by smoother functions

Theorem (Cybenko 1989) Any continuous function f from

[0, 1]d to R can be approximated as a function of the form:∑N
j=1 αjσ(w>j x+ bj), where σ is any sigmoid function.

8

Soft-thresholding

Cybenko’s theorem tells us that f can be represented using a single

hidden layer network ...

A non-constructive proof: how many neurones do we need? Might

depend on f ...

9

Neural networks

A feedforward layered network (deep learning = enough layers)

10

Deep Learning and the ILSVR challenge

Deep learning outperformed any other techniques in all major machine

learning competitions (image classification, speech recognition and

natural language processing)

The ImageNet Large Scale Visual Recognition Challenge

(ILSVRC).

1. Training: 1.2 million images (227×227), labeled one out of 1000

categories

2. Test: 100.000 images (227×227)

3. Error measure: The teams have to predict 5 (out of 1000) classes

and an image is considered to be correct if at least one of the

predictions is the ground truth. 2

11

ILSVR challenge

1From Stanford CS231n lecture notes

12

Architectures

13

Architectures

14

Computing with neural networks

• Layer 0: inputs x = (x
(0)
1 , . . . , x

(0)
d) and x

(0)
0 = 1

• Layer 1, . . . , L− 1: hidden layer `, d(`) + 1 nodes, state of node i,

x
(`)
i with x

(`)
0 = 1

• Layer L: output y = x
(L)
1

Signal at k: s
(`)
k =

∑d(`−1)

i=0 w
(`)
ik x

(`−1)
i

State at k: x
(`)
k = σ(s

(`)
k)

Output: the state of y = x
(L)
1

15

Training neural networks

The output of the network is a function of w = (w
(`)
ij)i,j,`: y = fw(x)

We wish to optimise over w to find the most accurate estimation of the

target function

Training data: (X1, Y1), . . . , (Xn, Yn) ∈ Rd × {−1, 1}

Objective: find w minimising the empirical risk:

E(w) := R(fw) =
1

2n

n∑
l=1

|fw(Xl)− Yl|2

16

Stochastic Gradient Descent

E(w) = 1
2n

∑n
l=1El(w) where El(w) := |fw(Xl)− Yl|2

In each iteration of the SGD algorithm, only one function El is

considered ...

Parameter. learning rate α > 0

1. Initialization. w := w0

2. Sample selection. Select l uniformly at random in

{1, . . . , n}
3. GD iteration. w := w − α∇El(w), go to 2.

Is there an efficient way of computing El(w)?

17

Backpropagation

We fix l, and introduce e(w) = El(w).

Let us compute ∇e(w):

∂e

∂w
(`)
ij

=
∂e

∂s
(`)
j︸ ︷︷ ︸

:=δ
(`)
j

×
∂s

(`)
j

∂w
(`)
ij︸ ︷︷ ︸

=x
(`−1)
i

The sensitivity of the error w.r.t. the signal at node j can be computed

recursively ...

18

Backward recursion

Output layer. δ
(L)
1 := ∂e

∂s
(L)
1

and e(w) = (σ(s
(L)
1)− Yl)2

δ
(L)
1 = 2(x

(L)
1 − Yl)σ′(s(L)

1)

From layer ` to layer `− 1.

δ
(`−1)
i :=

∂e

∂s
(`−1)
i

=

d(`)∑
j=1

∂e

∂s
(`)
j︸ ︷︷ ︸

:=δ
(`)
j

×
∂s

(`)
j

∂x
(`−1)
i︸ ︷︷ ︸

=w
(`)
ij

× ∂x
(`−1)
i

∂s
(`−1)
i︸ ︷︷ ︸

=σ′(s
(`−1)
i)

Summary.

∂El

∂w
(`)
ij

= δ
(`)
j x

(`−1)
i , δ

(`−1)
i =

d(`)∑
j=1

δ
(`)
j w

(`)
ij σ

′(s
(`−1)
i)

19

Backpropagation algorithm

Parameter. Learning rate α > 0

Input. (X1, Y1), . . . , (Xn, Yn) ∈ Rd × {−1, 1}
1. Initialization. w := w0

2. Sample selection. Select l uniformly at random in

{1, . . . , n}
3. Gradient of El.

• x(0)i := Xli for all i = 1, . . . d

• Forward propagation: compute the state and signal at each

node (x
(`)
i , s

(`)
i)

• Backward propagation: propagate back Yl to compute δ
(`)
i

at each node and the partial derivative ∂El

∂w
(`)
ij

4. GD iteration. w := w − α∇El(w), go to 2.

20

Example: tensorflow

http://playground.tensorflow.org/

21

http://playground.tensorflow.org/

Deep Learning without Local Minima

Critical question: The SGD algorithm will converge to a global

minimum of the risk, if we can guarantee that local minima have the

same risk as a global minimum. What does the loss surface look like?

Related work:

• P. Baldi, K. Hornik. Neural Networks and PCA: Learning from

Examples without Local Minima. Neural Networks, 1989.

• I. Goodfellow, Y. Bengio, A. Courville. Deep Learning,

http://www.deeplearningbook.org

• A. Choromanska et al.. The Loss Surface of Multilayer Networks.

ICML 2015.

22

Notations

• Data: Xi ∈ Rdx , Yi ∈ Rdy , m data points

X: dx ×m matrix whose columns are the Xi’s

Y : dy ×m matrix whose columns are the Yi’s

• H hidden layers

• Layer k with dk neurons, input weight matrix Wk ∈ Rdk×dk−1

• p = min{d1, . . . , dH}
• Output:

Ŷ (W,X) = qσH+1(WH+1σ(WHσ(WH−1σ(W2σ(W1X) . . .)

Linear activation function: Ŷ (W,X) = WH+1 . . .W1X.

23

Baldi-Hornik: 1-hidden linear networks

• Linear regression: fitting a linear model to the data.

Xi ∈ Rdx , Yi ∈ Rdy .

Find the matrix L? ∈ Rdy×dx minimizing

L(L) =
∑m
i=1 ‖Yi − LXi‖22.

When XX> is invertible, L is equal to L? = Y X>(XX>)−1.

Convexity of L.

• Now in a 1-hidden layer network, we are looking for L that can be

factorized as W2W1 where W1 ∈ Rp×dx and W2 ∈ Rdy×p.

In particular the rank of L is at most p.

Non uniqueness: W ′1 = CW1 and W ′2 = W2C
−1 work as well.

24

Baldi-Hornik: 1-hidden linear networks

• Define the dy × dy matrix Σ = Y X>(XX>)−1XY > (covariance

matrix of the best unconstrained linear approximation of Y).

dx = dy.

Theorem (Baldi-Hornik 1989) Assume that Σ is full rank, and has

dy distinct eigenvalues λ1 > . . . > λdy . Let W1 and W2 define a

critical point of L(W1,W2). Then there exists a subset Γ of p (or-

thonormal) eigenvectors of Σ, and a p × p invertible matrix C such

that:

W2 = UΓC, W1 = C−1U>Γ Y X
>(XX>)−1,

where UΓ is the matrix formed by the eigenvectors in Γ.

Moreover L(W1,W2) = trace(Y Y >)−
∑
i∈Γ λi.

25

Baldi-Hornik: 1-hidden linear networks

Theorem (Baldi-Hornik 1989) Assume that Σ is full rank, and has

dy distinct eigenvalues λ1 > . . . > λdy . Let W1 and W2 define a

critical point of L(W1,W2). Then there exists a subset Γ of p (or-

thonormal) eigenvectors of Σ, and a p × p invertible matrix C such

that:

W2 = UΓC, W1 = C−1U>Γ Y X
>(XX>)−1,

where UΓ is the matrix formed by the eigenvectors in Γ.

Moreover L(W1,W2) = trace(Y Y >)−
∑
i∈Γ λi.

Up to C, the global minimizer is unique, and is the projection on the

subspace spanned by the p top eigenvectors of Σ of the ordinary least

square regression matrix!

Taking an other set of eigenvectors for the projection yields a saddle

point.

26

This paper: networks with any depth and width

Theorem (Kawaguchi 2016) Assume that XX> and XY > are

full rank, dx ≥ dy. Assume that Σ is full rank, and has dy distinct

eigenvalues. The loss function L(W1, . . . ,WH+1) satisfies:

(i) it is non-convex and non-concave.

(ii) Every local minimum is a global minimum.

(iii) Every critical point that is not a minimum is a saddle point.

(iv) If rank(WH , . . . ,W2) = p, then the Hessian at any saddle point

has at least one strictly negative eigenvalue.

27

Proof sketch: example

Assume that W is a critical point and a local minimum, and that

rank(WH . . .W2) = p

• Necessary conditions: ∇L = 0 and ∇2L positive semidefinite.

• From the latter conditions, we deduce that X(Ŷ (W,X)− Y)> = 0.

• Go back to the unconstrained linear case: f(W ′) = ‖W ′X − Y ‖2F
for W ′ ∈ Rdy×dx . Let r′ = (W ′X − Y)> denote the error matrix.

By convexity, if Xr′ = 0 then W ′ is a global minimizer of f . Now

with W ′ = WH+1 . . .W1, we have Xr = Xr′ = 0, and hence W ′ is

a global minimizer of f .

28

This paper: non-linear networks with any depth and width

Rectified linear activation function: σ(x) = max(0, x).

Output:

Ŷ (W,X) = qσH+1(WH+1σ(WHσ(WH−1σ(W2σ(W1X) . . .)

An other way of writing the output:

Ŷ (W,X) = q

dx∑
i=1

γ∑
j=1

Xi,jAi,j

H∏
k=1

W
(k)
i,j ,

where the first sum is voer the input coordinates, the second sum is on

the path from the i-th input to the output, Xi,j = Xi,1 for all j is the

i-th input, and Ai,j is the activation (binary variable) of the path j for

input i

29

This paper: non-linear networks with any depth and width

Critical simplification: the Ai,j ’s are independent Bernoulli r.v. with

mean ρ!

Under this assumption (among others), there is an equivalence with a

linear network.

The previous theorem holds ...

30

Summary

SGD could well find global minimizer of the empirical risk, under some

conditions ...

What is the impact of regularization?

What about other activation functions?

31

