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ABSTRACT
We study the effect of energy-storage systems in dynamic
real-time electricity markets. We consider that demand and
renewable generation are stochastic, that real-time produc-
tion is affected by ramping constraints, and that market
players seek to selfishly maximize their profit. We distin-
guish three scenarios, depending on the owner of the stor-
age system: (A) the supplier, (B) the consumer, or (C) a
stand-alone player. In all cases, we show the existence of a
competitive equilibrium when players are price-takers (they
do not affect market prices). We further establish that under
the equilibrium price process, players’ selfish responses coin-
cide with the social welfare-maximizing policy computed by
a (hypothetical) social planner. We show that with storage
the resulting price process is smoother than without.

We determine empirically the storage parameters that max-
imize the players’ revenue in the market. In the case of
consumer-owned storage, or a stand-alone storage operator
(scenarios B and C), we find that they do not match so-
cially optimal parameters. We conclude that consumers and
the stand-alone storage operator (but not suppliers) have
an incentive to under-dimension their storage system. In
addition, we determine the scaling laws of optimal storage
parameters as a function of the volatility of demand and re-
newables. We show, in particular, that the optimal storage
energy capacity scales as the volatility to the fourth power.

1. INTRODUCTION
The process of liberalizing electricity markets is under-

way worldwide. It amounts to replacing tightly regulated
monopolies with lightly regulated competitive markets [29].
Electricity production is managed through scheduling deci-
sions. In a first stage, producers commit to an energy gener-
ation schedule determined through forecasts for the demand
and generation of renewable energy for the following day. In
a second stage, decisions are made in real-time to compen-
sate for forecast errors in load and production. The price
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volatility in real-time electricity markets1 raises the question
of the efficiency of these markets: Does the selfish behavior
of the various actors lead to a socially acceptable situation?

Electricity markets are highly complex dynamical systems.
They incorporate renewable energy sources, such as wind
and solar, that are highly volatile; loads that are inelastic,
for the most part; and generation units, that are subject to
friction and real-time constraints. To avoid blackouts and
due to physical constraints, real-time scheduling of energy
is critical.

A model of an electricity market that takes into account
these dynamical aspects is proposed in [7, 8]. The authors
study the competitive equilibriums in a real-time electricity
market where demand is stochastic and energy generation
is subject to ramping constraints. They show that if all ac-
tors are price-takers (they do not affect market prices), then
there exists a competitive equilibrium that is efficient : more
specifically, the selfish behavior of actors leads indeed to a
socially optimal scheduling of generation. However, they
also show that the prices that guarantee such an equilib-
rium exhibit considerable volatility: they oscillate between
0 and a “choke-up” price, and do not concentrate around the
marginal production cost. This model has been extended to
incorporate network constraints [26, 28], or the presence of
renewables [19]; see also [27] for a survey.

Our motivation in this paper is to understand the role
of storage in compensating volatility in dynamic real-time
electricity markets. This is highly relevant for markets with
a high penetration of renewables. Exploitation of renewable
energy is encouraged in many countries as a means to reduce
CO2 emissions. However, renewable energy sources, such as
wind and solar photovoltaic, are not dispatchable. A side ef-
fect of their high penetration is the increase in the volatility
of electricity generation and thus of prices, according to [19].
Therefore, in order to compensate for their volatility, a high
penetration of renewables needs to be supported by mech-
anisms such as storage systems (batteries or pump-hydro)
or fast-ramping generators (essentially gas-fired turbines).
Storage can be operated by an energy producer, a consumer,
or by a stand-alone storage operator. In the last case, the
storage owner needs to generate revenue, hence energy is
stored when market prices are low and is provided to the
grid when prices are high. We are interested, in particu-
lar, in understanding whether the market efficiency results
of [27] continue to hold; for example, whether it is socially

1the peak to mean ratio of prices can be as high as several
thousands, one famous example being the price observed in
California in 2000-2001 [17]



optimal to have stand-alone storage operators that react to
real-time prices.

Contributions. We extend the wholesale real-time mar-
ket model of [27] to incorporate a storage system with losses
due to the charge/discharge cycles. We consider three sce-
narios depending on the owner of the storage: (A) the sup-
plier, (B) the consumer, or (C) a stand-alone real-time stor-
age operator. We show that in all three cases, the market
is efficient: there exists a price process such that the selfish
behaviors of the players coincide with a socially optimal use
of the storage and scheduling of the generation. When the
storage energy capacity is large, this price process becomes
smooth. Moreover, irrespective of the considered scenario,
the same decisions concerning bought/sold energy, real-time
production, and storage system operation lead to social op-
timality. These decisions are enforced via the same incentive
(pricing) scheme.

We show numerically that when the storage belongs either
to the consumer or to a stand-alone real-time storage oper-
ator, the storage energy capacity that maximizes the stor-
age owner welfare is strictly smaller than the socially opti-
mal storage energy capacity. Consequently, even though the
market is efficient when the storage parameters are fixed,
consumers and stand-alone storage operators still have an
incentive to under-dimension their storage systems.

Finally, we study the effect of the volatility and of the
ramping capabilities of generators on the optimal storage
parameters. We show that when the volatility is σ, the op-
timal energy capacity of the storage system scales as σ4,
and its maximum charging/discharging power scales as σ2.
When the ramping capability of the generators is ζ, the opti-
mal storage energy capacity scales as 1/ζ3, and the optimal
maximum charging/discharging power scales as 1/ζ. We
conclude that a linear increase in the ramping capability of
fast-ramping generators (such as gas turbines) entails a cubic
decrease in the required energy capacity. In view of the high
cost of storage capacity, a paradoxical situation arises: in or-
der to accommodate a large deployment of renewables and
to compensate for the resulting generation volatility, there
is an incentive to deploy conventional fast-ramping genera-
tors (that have high carbon dioxide emissions) rather than
to invest in storage.

Road-Map. The rest of the paper is structured as fol-
lows. We first describe the market and storage model in
Section 3. We study the control problem from a social point
of view in Section 4. Section 5 contains the main theoretical
results: we show the existence of competitive equilibria in
all three scenarios and prove that they are socially optimal.
We study the incentives for actors to install storage devices
in Section 6. We investigate the relations between volatility,
ramping capabilities and optimal storage energy capacity in
Section 7. Finally, we conclude in Section 8.

2. RELATED WORK
A large part of the work, e.g., [5, 13, 18], related to the eco-

nomic aspects of storage systems investigates optimal energy
storage strategies for profit maximization in the electricity
market, assuming that storage owner are price-takers. For
example, for a wind-farm owner the authors of [10] study
optimal storage strategies in a day-ahead market. These
policies often assume that prices are known. The uncertain-
ties due to the variability of prices and their forecasting is

also studied in [1, 4].
The economic viability for storage owners is also an im-

portant question. On the one hand, it is shown in [25]
that there is a strong economic case for storage installa-
tions in the New York City region. A similar analysis is
conducted for the PJM interconnection (US east-coast) in
[21] for which the authors show a moderate storage capac-
ity is viable. On the other hand, according to [23], “storage
is not viable from a system perspective until extremely large
levels of wind power are seen on the system” in Ireland – a
country that envisioned 80% of the electrical consumption
generated by wind power plants. Moreover, it is suggested
in [16] that pumped-storage hydro-plant operators need to
change their business model (currently electricity price ar-
bitrage) because the potential diminishes with the increased
penetration of renewables: Inexpensive energy is generated
during the noon consumption peak by PV installations.

From a social planner’s perspective, it is shown [22] that
the undesired effects of the volatility of renewables can be
mitigated via the use of energy storage, with a manageable
increase in energy costs, based on a study in the UK. At
a European scale, the authors of [2, 15, 24] show how to
use model predictive control to update day-ahead produc-
tion schedule and mitigate energy curtailments. The use of
storage can also compensate for forecast uncertainties. Gen-
eration scheduling policies that minimize energy losses and
the use of fast-ramping generators are developed in [3, 12].

The question of the efficiency of the control by prices of
storage devices is raised in a few papers. Using traces of
the real market bids data of the French day-ahead market
in 2009, the authors of [14] evaluate the storage operation
by a public or a private operator by simulation. They show
that the public operation leads to higher social welfare and
lower cost of supply than the private operation. Using traces
from the Swiss market, authors of [6] also show that the
optimal control for a price-taker storage owner are socially
optimal. However, these two papers only consider a single-
run of simulation and do not provide theoretical guarantee.

The authors of [20] go one step further and obtain theoret-
ical guarantees on a model of a purely static setting: loads
are predictable on-peak and off-peak periods, and the price
depends linearly on the load. They show that for the same
three cases of ownership structure as ours (storage belongs
to producers, to consumers or to independent actors), the
selfish behavior of price-taker agents lead to a socially opti-
mal use of storage. However, when agents influence prices,
storage tends to be underused when owned by producers or
independent actors or overused if owned by consumers. The
reason is that the higher the use of storage is, the smoother
the price is. Our model differs greatly from [20] as it incor-
porates the dynamical aspects of demand and generation.

3. MARKET AND STORAGE MODEL
In this section we first present a model of a two-stage

(day-ahead and real-time) electricity market consisting of
two main actors, a consumer and a supplier. Both can have
access to an energy storage system in the real-time stage of
the market, depending on the scenario. We then describe
the storage system, and we analyze three scenarios, depend-
ing on whether the storage is controlled by the supplier, by
the consumer, or by a third independent actor (a real-time
storage operator).



3.1 Two-stage Electricity Markets
We consider an electricity market with two stages: a day-

ahead stage and a real-time stage. The two main actors or
players in this market are a supplier who produces electricity,
and a consumer who buys electricity and serves a fairly large
number of end-users.

In the day-ahead market, each day, players forecast a de-
mand profile dda(t) and plan generation gda(t) for the next
day. The price of electricity is set by market mechanisms
to pda(t), and the consumer agrees to buy an amount of
electricity gda(t) at this price. As often in markets where
demand is inelastic and unpredictable, the consumer pur-
chases an extra amount of goods over the predicted de-
mand as a precautionary measure. Hence we assume that
gda(t) = dda(t) + rda, where rda is called the fixed reserve.
In addition to the conventional energy sources, the supplier
uses renewable energy sources (e.g., wind, solar) that pro-
vide a volatile production. The forecast of generation of
renewables constitutes a fraction of the planned generation
gda(t), and is complemented with conventional energy.

The real-time market deals with situations where the ac-
tual demand cannot be met, due to the volatility of the
demand and of the production of renewable energy. The
actual demand at time t is Da(t) = dda(t) + D(t), where
D(t) is referred to as the real-time demand, and can be ei-
ther positive or negative. The renewable forecast error (the
difference between the actual and the forecasted production
of renewable energy) is denoted by Γ(t). The supplier re-
acts in real-time to unpredictable changes in demand and
renewable generation, and she produces an amount of en-
ergy G(t) from additional and usually expensive sources.
The total amount of electricity produced at time t is then
Ga(t) = gda(t) + Γ(t) + G(t), and the corresponding real-
time reserve is defined as R(t) = Ga(t)−Da(t). The energy
produced in real-time is sold at a price P (t) at time t. In [8],
the authors characterize the competitive equilibria arising in
the real-time market – they analyze the amount of real-time
energy bought by the consumer, the amount of real-time
energy G(t) produced by the supplier, and the price P (t),
resulting from the strategic behavior of the market actors.
In this paper, we are interested in studying the effect of the
existence of storage on the real-time market. We make the
same assumptions as in [8], i.e.:

(A1) Volatility. We model the forecast errors made
in the demand and in the generation of renewable energy,
Z(t) = Γ(t) − D(t) + rda, as a driftless Brownian motion
with volatility σ, i.e., the variance of Z(t) is σ2t.

(A2) Prices. We assume that the market actors are price
takers: the actors strategically define their actions assuming
that the prices are exogenous, and that they cannot influence
or manipulate these prices.

(A3) Information. We suppose that the market actors
share the same information: Before making a decision at
time t, they have access to the exogenous data up to time t
(i.e., (D(τ),Γ(τ), P (τ), τ ≤ t) and to all the past decisions
of the other players up to time t. Mathematically, this as-
sumption means that there exists a filtration {Ft, t ≥ 0}
such that all processes are Ft-adapted.

3.2 Storage Model
We consider a storage system characterized by (i) the

maximum amount of energy Bmax it can store, i.e., its en-
ergy capacity; (ii) the maximum speed Cmax at which it can

be charged, referred to as the maximum charging power; (iii)
the maximum instantaneous amount of energy Dmax we can
extract from it, i.e., its the maximum discharging power. We
model the efficiency of a charge-discharge cycle as follows:
only a fraction η ∈ (0, 1] of the injected energy is stored, and
the stored energy can be extracted without losses.

More precisely, let B(t) denote the stored energy at time
t, and let u(t) be the instantaneous energy extracted from
the storage. u(t) < 0 means that we are currently storing
energy. The storage level evolves as follows:

∂B

∂t
= −u(t)(1{u(t)>0} + η1{u(t)<0}). (1)

The storage control process u = (u(t), t ≥ 0) satisfies the
following constraints: at any time t,

− Cmax ≤ u(t) ≤ Dmax, (2)

u(t) ≥ 0 if B(t) = Bmax, and u(t) ≤ 0 if B(t) = 0. (3)

We write u ∈ XB if (2)-(3) are satisfied. Note that (3) is
equivalent to 0 ≤ B(t) ≤ Bmax for all t.

3.3 Scenario A: Storage at the Supplier
We first focus on the case where the supplier controls the

storage system. The storage system is used only in the real-
time stage of the market. At this stage, deterministic pro-
cesses describing day-ahead demand, generation, and prices
(dda(t), gda(t), pda(t), t ≥ 0) are known from the day-ahead
market. The real-time market model for this scenario is
represented in Figure 1. Next, we describe the strategic de-
cisions that the actors may take, and introduce the notion
of dynamic competitive equilibrium.

Demand D(t)

Storage B(t)

Generation G(t)+Γ(t)•

u(t) (free)
ESED

Figure 1: Real-time market model in Scenario A:
storage is at the supplier.

Consumer. The strategic decisions taken over time by the
consumer are represented by a process ED, where ED(t) is
the energy bought on the real-time market at time t. We
denote by XD the set of all possible processes ED. We
denote by v the consumer utility per unit of satisfied de-
mand. When the demand exceeds the acquired energy, i.e.,
if ED(t) + gda(t) < Da(t), the consumer bears the cost of
a blackout, and suffers from a loss of utility cbo per unit of
unsatisfied demand. Recall that the price of electricity in
the real-time market is P (t) at time t, and hence the payoff
UD(t) of the consumer at time t is:

UD(t) := vmin(Da(t), ED(t) + gda(t))

− cbo(Da(t)−ED(t)−gda(t))+ − (P (t)ED(t)+pda(t)gda(t)).

This payoff can be decomposed as UD(t) = ŪD(t) +WD(t),
where

ŪD(t) = v(dda(t) +D(t))− pda(t)gda(t),

WD(t) = − (v + cbo)(ED(t)−D(t) + rda)− − P (t)ED(t).



The term ŪD(t) only contains quantities that cannot be con-
trolled by the consumer in the real-time market. Thus, the
quantity of interest is the second term WD(t). By abuse of
notation, we refer to this second term (rather than UD(t))
as the consumer’s payoff.

The consumer’s objective is to maximize her welfare de-
fined as her long-run discounted expected payoff:

max
ED∈XD

WD := E

∫ ∞
0

e−γtWD(t) dt.

Supplier. The supplier controls three quantities: the real-
time energy generation G(t), the storage system via the stor-
age control process u(t), and the energy sold on the real-
time market ES(t). We say that (ES , G, u) satisfies the con-
straints of the supplier and we write (ES , G, u) ∈ XS if

• the following ramping constraints for real-time gener-

ation are satisfied: ∀t′ > t, ζ− ≤ G(t′)−G(t)
t′−t ≤ ζ+,

where ζ− < 0 and ζ+ > 0 are called the ramping ca-
pabilities;

• the storage constraints are satisfied: u ∈ XB ;

• for all t ≥ 0, the supplier sells at most ES(t) ≤ Γ(t) +
G(t) + u(t) on the real-time market.

We denote by c the marginal cost of real-time energy gen-
eration, and by cda the cost of energy generation in the day-
ahead market. The supplier’s payoff at time t is given by:

US(t) = P (t)ES(t) + pda(t)gda(t)− cG(t)− cdagda(t).

As for the consumer, we write US(t)=ŪS(t)+WS(t), where

ŪS(t) = pda(t)gda(t)− cdagda(t),

WS(t) = P (t)ES(t)− cG(t).

The term ŪS(t) contains only quantities that cannot be
controlled by the supplier in real-time. Thus, we focus on the
second term, WS(t). Again, by abuse of notation we refer to
WS(t) (rather than US(t)) as the supplier’s payoff. Observe
that the supplier’s utility is increasing in ES . Hence, setting
ES(t) = Γ(t) +G(t) + u(t) maximizes her payoff in XS .

The objective of the supplier is to maximize her welfare:

max
(ES ,G,u)∈XS

WS := E

∫ ∞
0

e−γtWS(t) dt.

Dynamic Competitive Equilibrium. As in Cho and Meyn
[8], we introduce the notion of dynamic competitive equilib-
rium. When the supplier owns and controls the storage, a
dynamic competitive equilibrium is defined as follows:

Definition 1. (Dynamic competitive equilibrium, storage
at the supplier) A dynamic competitive equilibrium is a set
of price and control processes (P e, EeD, E

e
S , G

e, ue) satisfying

EeD ∈ arg max
ED∈XD

WD, (4)

(EeS , G
e, ue) ∈ arg max

(ES ,G,u)∈XS

WS , (5)

EeD = EeS . (6)

In the above definition, (4) means that EeD constitutes an
optimal control from the consumer’s perspective. Similarly,
(5) states that (EeS , G

e, ue) is optimal from the supplier’s
perspective. Finally, (6) is the market constraint. Note
that in (4), the consumer is not subject to the supplier’s
constraints and vice-versa for (5). See [8] for a discussion.

3.4 Scenario B: Storage at the Consumer
When the consumer has control of the storage, her strate-

gic decisions are represented by the process pair (ED, u),
where u(t) is the storage control process, i.e., the amount of
power discharged at time t from the storage.

Demand D(t)

Storage B(t)

Generation G(t)+Γ(t)•

u(t) (free)
ESED

Figure 2: Market model in scenario B: storage is at
the consumer.

By abuse of notation we still write the constraints of the
consumer as (ED, u) ∈ XD. The energy bought is comple-
mented using the storage system, and thus the consumer’s
payoff becomes

WD(t) = −(v + cbo)(ED(t)+u(t)−D(t)+rda)− − P (t)ED(t).

The supplier controls the energy sold ES and the real-time
generation G. We say that they satisfy the supplier con-
straints and we write (ES , G)∈XS if and only if for all t≥0,
0≤ES(t)≤G(t)+Γ(t). The supplier’s payoff remains the same
as in the case she controls the storage: WS(t) = P (t)ES(t)−
cG(t).

In this scenario, the definition of a dynamic competitive
equilibrium is similar to that presented in the case the sup-
plier owns the storage: the only difference is that (4) and (5)
are replaced respectively by (EeD, u

e) ∈ arg maxED,u∈XD
WD

and (EeS , G
e) ∈ arg max(ES ,G)∈XS

WS . Note that here the
expression of WD is modified compared to (4).

3.5 Scenario C: Stand-Alone Storage Opera-
tor

In this scenario, the storage is owned by a third player,
the stand-alone storage operator who seeks to maximize her
profit via arbitrage on the real-time market: buying energy
at low prices and selling at high prices.

Demand D(t)

Storage B(t)

Generation G(t)+Γ(t)•
u(t)

ESED

Figure 3: Market model in Scenario C: stand-alone
storage operator.

The only control action of the storage operator is u(t), the
power discharged from the storage system at time t. Her
constraints depend on the storage system parameters and
are summarized writing u ∈ XB . The payoff of the storage
operator at time t is WB(t) = P (t)u(t).

The control, constraints, and payoff of the consumer are
the same as in Section 3.3. In particular, her payoff is

WD(t) = −(v + cbo)(ED(t)−D(t) + rda)− − P (t)ED(t).

The control, constraints, and payoff of the supplier are the
same as in Section 3.4. Again, the supplier’s payoff remains
equal to WS(t) = P (t)ES(t)− cG(t).



The definition of a dynamic competitive equilibrium is
again similar to the one presented in the case where the
supplier owns the storage. The difference is that (5) is
replaced by (EeS , G

e) ∈ arg max(ES ,G)∈XS
WS , and (6) by

ES(t) + u(t) = ED(t). In addition a competitive equilib-
rium maximizes the welfare of the storage operator: ue ∈
arg maxu∈XB

WB .

4. THE SOCIAL PLANNER’S PROBLEM
In this section we assume that the system is controlled by

a single entity, a hypothetical social planner, who decides
what is bought and sold, the generation and storage control
processes, and whose objective is to maximize the system
welfare over all feasible controls. After defining the social
planner’s optimal control problem, we characterize its solu-
tion, i.e., the socially optimal controls. This analysis will be
used later in the paper to state whether the market is effi-
cient, or the strategic behavior of the various market actors
has a negative impact in terms of social efficiency.

4.1 Social Welfare
A time t, the total system payoff U(t) is either defined

as U(t) = UD(t) + US(t) when the storage is controlled by
the supplier (or the consumer) or as U(t) = UD(t)+US(t)+
UB(t) in case the storage is controlled by a stand-alone mar-
ket actor. It can be easily checked that the total payoff does
not depend on the market actor controlling the storage. Let
us, for instance, assume that the storage is controlled by the
supplier. As previously, we decompose the total payoff into
a controllable part W (t) and an uncontrollable part Ū(t).
We have, for any t ≥ 0:

W (t) = −(v + cbo)(ED(t)−D(t) + rda)−

+ P (t)(ES(t)− ED(t))− cG(t). (7)

When the market constraint ES = ED is further imposed,
the controllable part of the total payoff does not depend on
the price P (t) and is an increasing function of ES(t). Hence,
the socially optimal controls satisfy: ES(t) = ED(t) =
Γ(t) +G(t) +u(t). These controls must also satisfy the gen-
eration and storage constraints, i.e., (Γ+G+u,G, u)∈XS .
Recall that the reserve process R is defined as the difference
of the generated energy and of the demand:

R(t) := Γ(t) +G(t)−D(t) + rda.

By abusing the notation, we write (R, u) ∈ XS if and only
if (Γ +G+ u,G, u) ∈ XS . The controllable part of the total
payoff can be further reduced and written as

W (t) = −(v + cbo)(R(t) + u(t))− − cR(t). (8)

A social planner want to maximize the social welfare W:

W := E
∫ ∞
0

e−γt[−(v + cbo)(R(t) + u(t))− − cR(t)]dt.

over all couple of processes (R, u) ∈ XS . The solution of this
problem is denoted by (R?, u?), and the corresponding op-
timal controls at the various market actors are E?D = E?S =
R? + u? +D − rda, G? = R? +D − Γ− rda, and u?.

4.2 Socially Optimal Controls
The following theorem characterizes the socially optimal

controls. These controls define, for any given reserve r and
storage state b, the way real-time generation evolves, i.e.,

g = ∂G
∂t

, and the storage control process u. All proofs are
presented in Appendix.

Theorem 1. The socially optimal controls satisfy:
(Generation) For each b, there exists a threshold φ(b) such
that the socially optimal generation control g? is ζ+ if r <
φ(b) and ζ− if r > φ(b). φ is a nonincreasing function.
(Storage) The optimal storage control u? satisfies:

u? =

 max(−r,−Cmax) if r ≥ 0 and b < Bmax,
min(−r,Dmax) if r < 0 and b > 0,
0 otherwise.

(9)

The value function of the social planner problem is:

V (r, b) = sup
(R,u)∈XS

E(r,b)

∫ ∞
0

e−γt

×
[
−(v + cbo)(R(t) + u(t))− − cR(t)

]
dt, (10)

where (r, b) is the initial condition: R(0) = r and B(0) = b,
and E(r,b)[·] := E[·|R(0) = r,B(0) = b].

In the proof of the above theorem, we establish that ∂V
∂r

is well defined (almost everywhere), and that the threshold
function φ characterizing the optimal generation control is
φ(b) = sup{r : ∂V

∂r
(r, b) ≥ 0}. The optimal storage control

u? has a simple interpretation: When the reserve is positive,
the supplier first serves the demand and puts the remaining
energy in the storage while ensuring that storage constraints
are satisfied (e.g. the charging power cannot exceed Cmax).
If the reserve is negative, the supplier can serve only part of
the demand using the generated energy and has to extract
energy from the storage to serve the remaining demand (if
this is at all possible).

Under the socially optimal controls, we denote by B? the
storage level process. The system dynamics are character-
ized by (R?, B?) and admit a steady-state whose stationary
distribution is denoted by π. Under the assumption de-
scribed in Section 3, R? is a Brownian motion with variance
σ and whose average drift varies over time when the gener-
ation control g? switches values (e.g. from ζ+ to ζ−).

4.3 Numerical Example and Energy Units
To illustrate the socially optimal controls defined in Theo-

rem 1, we plot the threshold function b 7→ φ(b) in Figure 4(a)
for different values of the storage energy capacity Bmax. We
have the storage level b on the x-axis and the reserve r on
the y-axis. Using the same representation, a sample-path
of (R∗, B∗) is plotted in Figure 4(b) (solid blue line). The
vector field corresponds to the optimal controls (u∗, g∗) and
the dashed line to the function b 7→ φ(b).

In all figures, the storage energy capacity Bmax is ex-
pressed in units of energy (u.e.) and the maximum charg-
ing/discharging powers Cmax and Dmax are expressed in
units of power (u.p.). For a variability σ and a ramping
capability ζ, we choose that one unit of energy is equal to
σ4/ζ3 and one unit of power corresponds to σ2/ζ. We refer
to Section 7 for the reasons for these scalings.

For example, let us consider the scenario envisioned for
the UK in 2020 [3, 12] where wind power is used to cover
20% of the total electricity consumption – this corresponds
to 26GW of peak power. At the scale of the country, the
variability of the demand is small compared to the variability
of the wind generation. This variability is due to uncertain
forecast. Using the same data as [12], the square of the
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Figure 4: Illustration of the optimal control law for
the social planer’s problem.

volatility of the wind generation is σ2 = 0.6 (GW )2/h. This
means that if the ramping capability ζ = 1GW/h, one unit
of energy corresponds to 360MWh and one unit of power to
600MW. For a ramping capability of ζ = 2GW/h, one unit
of energy corresponds to 45MWh and one unit of power to
300MW.

Throughout the paper, all numerical values are obtained
by discretizing in time and space the original model to ob-
tain a discrete Markov decision process. This control prob-
lem is then solved using brute-force dynamic programming
to obtain the function b 7→ φ(b). The simulation of a sample-
path (Figures 4(b) and 5) is obtained using φ in a discrete-
time continuous-space model and the steady-state perfor-
mance indicator (Figures 6 to 11(b)) are computed by com-
puting the stationary measure of the discrete-time discrete-
space model. Unless otherwise specified, the parameters
used for the simulations are σ=1, ζ+=1, ζ−=3, Bmax=1 u.e.,
Cmax=Dmax=3 u.p., η=1, γ=0.01, c=1 and (v + cbo)=5.

5. DYNAMIC COMPETITIVE EQUILIBRIA
AND MARKET EFFICIENCY

Under a dynamic competitive equilibrium, the price pro-
cess is such that the decisions taken over time by the var-
ious market actors maximize their respective welfares. In
this section, we first prove that for all scenarios, the market
is efficient in the sense that any dynamic competitive equi-
librium maximizes the social welfare. We then prove the
existence of such an equilibrium: we provide explicit expres-
sions for the equilibrium price process and for the strategic
controls used by the various market actors in equilibrium.
We conclude the section by showing numerically the effect
on prices of the presence of storage: in absence of storage,
prices are volatile and can only take two values, 0 and the
”choke-up” price v+ cbo [8], whereas with storage, prices are
smoother and oscillate around the marginal production cost
c as the storage energy capacity grows large.

5.1 Market Efficiency
We first assume that dynamic competitive equilibria exist,

and we prove that these equilibria are efficient in the sense
that the corresponding controls maximize the system social
welfare. This result is often referred to as the social welfare
theorem in economics. A similar result has been established
in [27] without storage. We show that the market remains
efficient even in presence of storage.

Theorem 2. (Social Welfare Theorem) Assume that a
dynamic competitive equilibrium exists. Then:
(i) any competitive equilibrium maximizes the social welfare;
(ii) conversely, for any control processes (EeD, E

e
S , G

e, ue)
maximizing the social welfare, there exists a price process P e

such that (P e, EeD, E
e
S , G

e, ue) is a competitive equilibrium.

5.2 Equilibria: Existence and Properties
If dynamic competitive equilibria exist, we know that they

are socially efficient (even in presence of storage). We show
that competitive equilibria indeed exist and characterize the
corresponding price and control processes. More precisely,
we identify a price process P ? that can lead to an equilib-
rium (in fact, as it turns out, P ? is the only price process
leading to an equilibrium), and show that if (E?D, E

?
S , G

?, u?)
are socially optimal controls, (P ?, E?D, E

?
S , G

?, u?) is a com-
petitive equilibrium

Let (R?, u?) be the reserve-storage control process maxi-
mizing the social welfare (starting at R?(0) = r and B?(0) =
b). Denote by B? the corresponding storage level process,
and define the price process P ? as:

P ?(t) =


0 if R?(t)+u?(t) > 0,
η ∂V
∂b

(R?(t), B?(t)), if R?(t)+u?(t) = 0, R?(t) > 0,
∂V
∂b

(R?(t), B?(t)), if R?(t)+u?(t) = 0, R?(t) ≤ 0,
v + cbo, if R?(t)+u?(t) < 0.

(11)

Theorem 3. Let P ?, G? and u? be defined as above. Then

(i) (P ?, E?D=Γ+G?+u?, E?S=Γ+G?+u?, G?, u?) is a com-
petitive equilibrium when the storage is at the supplier.

(ii) (P ?, E?D = Γ +G?, E?S = Γ +G?, G?, u?) is a competi-
tive equilibrium when the storage is at the consumer.

(iii) (P ?, E?D = Γ+G?+u?, E?S = Γ+G?, G?, u?) is a com-
petitive equilibrium when there is a stand-alone storage
owner.

In particular, this theorem implies that at the equilibrium,
the price, generation and storage control processes are the
same in all three scenarios. Moreover these controls maxi-
mize the social welfare.

5.3 Equilibrium Price Distribution: the Im-
pact of Storage

At the equilibrium, the price process (11) is a function of
the optimal reserve and storage control processes. We plot
in Figure 5 the evolution over time of the prices P ∗(t) and
of the storage level B∗(t). We fix the maximum charging
and discharging powers to Cmax=Dmax=3 u.p. and we com-
pare the results for four values of energy capacity of storage:
Bmax=0 u.e. (i.e. no storage), 1 u.e., 3 u.e. and 10 u.e., where
1 u.p. = σ2/ζ and 1 u.e.=σ4/ζ3 (see §4.3). We use the same
random seed so that D(t)−Γ(t) is the same in all four cases.

As shown in [27], when there is no storage the prices os-
cillate between 0 and the “choke-up” price (v + cbo) (Fig-
ure 5(a)). When Bmax > 0, the prices always remain be-
tween 0 and (v+cbo), but they are smoother. When Bmax is
large and η = 1 (Figure 5(c)), the prices are almost constant
and close to the marginal cost of production c = 1. When
Bmax is large and η = 0.8 (Figure 5(d)), the prices oscillate
around c = 1, in this case, between 0.88 and 1.1 = 0.88/η.

The optimal reserve and storage level process (R∗, B∗)
is stationary. We compute numerically the distribution of
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(b) Bmax = 2 u.e., η = 1.
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(c) Bmax = 10 u.e., η = 1
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(d) Bmax = 10 u.e., η = 0.8

Figure 5: Evolution of prices and storage level over
time for various storage energy capacities Bmax. For
Bmax = 10 u.e., we compare η = 0.8 and η = 1.

prices in the steady-state regime of the process (R∗, B∗).
The results are reported in Figure 6. Again, we observe
that when there is no storage, the price takes only the two
values 0 and (v + cbo). When η = 1, the price tends to con-
centrate around the marginal production cost c = 1 as Bmax

increases. For η = 0.8, the price signals whether the storage
owner should charge (price≈0.88) or discharge (price≈1.1).
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Figure 6: Steady-state distribution of prices for var-
ious storage energy capacities Bmax. For Bmax =
10 u.e., we zoom on c=1 to compare η = 0.8 and η = 1.

6. STRATEGIC INVESTMENT IN STORAGE
In this section, we study numerically the welfare of the

different actors as a function of the energy capacity of stor-
age and of the maximum charging/discharging powers. We
first define and compute the socially optimal energy capac-
ity (§6.1). We then show that when the supplier owns the
storage, her optimal energy capacity is the socially optimal

one. However, when the storage controlled by the consumer
or by an independent actor, their optimal energy capacity is
strictly lower. Finally, we show in §6.3 that the same results
hold for the maximum charging/discharging powers.

6.1 Socially Optimal Energy Capacity
The total payoff, given by (8), is composed of two terms:

the benefit for the consumer minus the cost of blackout,
equal to −(v + cbo)(R(t) + u(t))−, and minus the cost of
producing the energy −cG(t). Thus, if the initial reserve
and storage process (r, b) is distributed as the stationary
distribution π of the optimal reserve and storage processes,
the expected social welfare is

−E(r,b)∼π

∫ ∞
0

e−γt
[
(v + cbo)(R∗ + u∗)− + cR∗

]
dt

=
1

γ
E(r,b)∼π

[
−(v + cbo)(R∗ + u∗)− − cR∗

]
. (12)

The social welfare increases as the energy capacity (Bmax)
or maximum charging/discharging power (Cmax and Dmax)
of the storage system increases. Thus, if we neglect the
cost of installing additional energy capacity, the greater the
storage system is, the greater the social welfare is.
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Figure 7: Expected social welfare in the stationary
regime as a function of the energy capacity Bmax.

In practice, however, storage capacity is expensive. Thus,
installing additional storage capacity is worthwhile only as
long as the resulting welfare gain is important. In Figure 7,
we plot the average social welfare in a stationary regime,
given by (12), as function of the storage capacity Bmax

for two values of the maximum charging/discharging power,
Cmax = Dmax = 1 u.p. and Cmax = Dmax = 3 u.p., and for
two values of the storage efficiency, η = 0.8 and η = 1. We
observe that in all cases, the gain in welfare is important
for low storage capacities and saturates rapidly. For exam-
ple, when Cmax = 1 u.p., Figure 7(a), the saturation occurs
for Bmax ≈ 4 u.e.. For Cmax = 3 u.p., the saturation occurs
for Bmax ≈ 7 u.e.. We call these values the socially optimal
storage capacities.

6.2 Storage Operator’s Revenue

6.2.1 Storage at the Supplier
Let us first assume that the storage belongs to the sup-

plier. As the market is efficient, the reserve process R and
storage control u are equal to the socially optimal reserve
processes R∗ and u∗. Thus, at time t, the supplier sells
R∗(t) + u∗(t) at prices P ∗(t) and has a cost of produc-
tion of −cR∗(t). Her instantaneous payoff is P ∗(t)(R∗(t) +
u∗(t)) − cR∗(t). The equilibrium price P ∗(t) is equal to



0 when R∗(t) + u∗(t) > 0 and to (v + cbo) when R∗(t) +
u∗(t) < 0. This shows that the supplier’s payoff equals
−(v + cbo)(R∗(t) + u∗(t))− − cR∗(t), which is exactly the
total payoff. This shows that if the storage belongs to the
supplier, her welfare increases as the energy capacity in-
creases in the same proportion as the social welfare. Hence,
the optimal energy capacity from a supplier-owned storage
perspective is the same as the socially optimal capacity.

6.2.2 Storage at the Consumer and at a Stand-Alone
Storage Operator

When the the consumer owns the storage, her payoff at
time t is equal to −(v + cbo)(R∗(t) + u∗(t))− − P ∗(t)R∗(t).
The price P ∗(t) is equal to 0 when R∗(t) + u∗(t) > 0 and to
v + cbo when R∗(t) + u∗(t) < 0. Thus we can write

P ∗(t)R∗(t) = P ∗(t)(R∗(t) + u∗(t))− P ∗(t)u∗(t)

= −(v + cbo)(R∗(t) + u∗(t))− − P ∗(t)u∗(t).

This shows that the consumer’s payoff is equal to P ∗(t)u∗(t).
If the storage is owned by a stand-alone storage operator,
her instantaneous payoff will be exactly the same: at time
t, a quantity u∗(t) is sold at price P ∗(t). Thus, the average
welfare of the consumer is equal to that of a stand-alone
storage operator:

E(r,b)∼π

∫ ∞
0

dte−γtP ∗(t)u∗(t) =
1

γ
E(r,b)∼π[P ? · u?]. (13)

In Figure 8, we plot the average welfare of a stand-alone
storage operator as a function of the energy capacity Bmax.
The system parameters are the same as those used to com-
pute the social welfare in Figure 7. When Cmax = Dmax = 1,
the expected welfare saturates for Bmax = 2 u.e. and dimin-
ishes slightly afterward. When Cmax = Dmax = 3 u.p., the
expected welfare is maximal for Bmax ≈ 1.5 u.e. and de-
creases sharply afterward. It diminishes almost to zero for
η = 0.8 when Bmax goes to infinity. In both cases, the ex-
pected welfare is maximal for a finite energy capacity and
this capacity is much lower than the socially optimal ca-
pacity. This means that the consumers and the stand-alone
storage operators have an incentive to undersize their stor-
age.
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Figure 8: Expected welfare of the consumer when
she owns the storage or of the stand-alone storage
operator as a function of the energy capacity Bmax.

This result seems paradoxical, as it implies that even if we
neglect the cost of storage, a storage owner would make less
money with a larger energy capacity. The explanation comes
from the price-taking assumption (A2). When the energy
capacity grows, the price variations diminish. As a stand-
alone storage owner gains only from buying at low price

and selling at high price, her gain diminishes as the prices
variability decreases. This situation is radically different
when the supplier owns the storage. In this case, a higher
storage leads to lower losses and therefore diminishes the
production cost. This results in higher gain for the supplier
even with a large storage.

6.3 Optimal Maximum Charging/Discharging
Powers

As we just observed, when the storage belongs to the con-
sumer or to a third party, the storage owner has an incentive
to undersize her energy capacity, compared to a social plan-
ner. Figure 9 shows that we have a similar phenomenon
regarding the maximum charging/discharging power.

In Figure 9(a), we plot the expected social welfare as a
function of the maximum charging/discharging power Cmax =
Dmax. This curve is similar to Figure 7 and the optimal
charging/discharging powers are Cmax = Dmax ≈ 1 u.p.. In
Figure 9(b), we plot the expected welfare of a stand-alone
storage operator. As for the energy capacity, it has a maxi-
mum for a relatively small value Cmax = Dmax ≈ 1 u.p. and
then decreases quickly. We plot these curves for Bmax =
5 u.e. but their shapes are similar for other values of Bmax,
even small values like Bmax = 0.5 u.e..
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Figure 9: Welfare of the players as a function of
maximum charging/discharging power Cmax = Dmax.

7. VOLATILITY AND STORAGE SIZING
We now study the effect of σ (the volatility of the de-

mand and renewable generation process) on the way the
storage should be dimensioned. We show that if the ramp-
ing capability of the generators remains unchanged, then
the storage energy capacity needed to mitigate this volatil-
ity scales as σ4, and that the required charging/discharging
powers scale as σ2. If the volatility is fixed and the ramp-
ing capability ζ varies, then the storage capacity needed
to mitigate the volatility scales as 1/ζ3, and the maximum
charging/discharging powers should scale as 1/ζ. In partic-
ular, this implies that to maintain a fixed optimal energy
capacity, ζ should scale as σ4/3.

This supports the idea that increasing the amount of power
coming from renewables could lead to an increase in carbon
dioxide emissions. Doubling the amount of renewables would
result in multiplying the volatility by 2. In this case, it is
probably easier and less expensive to install generators with
24/3 ≈ 2.5 times larger ramping capability rather than to
multiply the energy capacity by 16. However, these fast-
ramping generators (e.g. gas turbines) tend to emit more



carbon dioxide than conventional generators.

7.1 Scaling Laws for the Storage Capacities
Let us recall that σ is the volatility2 of the difference of

demand and of the renewable generation process and that
ζ− and ζ+ are the ramping capabilities of the real-time gen-
erators. The next theorem shows that if the storage ca-
pacity Bmax is scaled as σ4/ζ3 and the maximum charg-
ing/discharging powers Cmax and Dmax are scaled as σ2/ζ,
then the social welfare scales as σ2/ζ.

In Section 6, we defined the socially optimal storage pa-
rameters. They correspond to the knee of the curve of Fig-
ures 7 and 9(a) beyond which installing new storage ca-
pacity leads to a negligible increase of the social welfare.
Therefore, this theorem implies that the optimal storage en-
ergy capacity needed to accommodate the volatility scales as
σ4/ζ3, and the maximum charging/discharging powers scale
as σ2/ζ:

Bmax = Θ(σ4/ζ3) and Cmax = Θ(σ2/ζ).

Theorem 4. Let R,B be the socially optimal reserve and
storage level processes when the system parameters are

(σ, ζ+, ζ−, Bmax, Cmax, Dmax, γ).

Then, when the system parameters become

(xσ, yζ+, yζ−,
x4

y3
Bmax,

x2

y
Cmax,

x2

y
Dmax,

x2

y2
γ),

the corresponding socially optimal processes Rx,y, Bx,y are

Rx,y(t) =
x2

y
R

(
y2

x2
t

)
and Bx,y(t) =

x4

y3
B

(
y2

x2
t

)
.

Moreover, let W be the social welfare for the initial pa-
rameters. The social welfare for the rescaled parameters is
(x2/y)W.

The proof of this theorem consists in verifying that the pro-
posed scaling works. It is detailed in [11].

7.2 Practical Implications
Theorem 4 implies that if ζ and σ are multiplied by the

same factor x, then the optimal storage parameters increase
linearly in x. Figure 10 illustrates this fact: we plot the
optimal social welfare as a function of the available Bmax for
four values of x. Each time the remaining parameters are
the same, and we choose Cmax = Dmax = 1000 to release
the charge/discharge constraints of the storage. Figure 10
shows that for x = 1 (respectively 2, 4, 6), the optimal energy
capacity is approximately 8 (respectively 15, 30 and 50),
that is to say linear in x (as expected).

For a fixed ramping constraint ζ, Theorem 4 states that
the optimal energy capacity increases as the scaling factor
of σ to the fourth power. In Figure 11(a) we scale ζ by the
a fixed constant y = 3, we scale σ by a various factors x =
1, 2, 3, 4, and we plot the resulting optimal social welfare.
For the four values of x, the respective optimal values of
the energy capacity are approximately 7, 100, 400, 1000 u.e.,
which correspond to roughly Θ(x4), as expected.

2Note that the volatility corresponds to the standard devia-
tion and not to the variance: as D−Γ is a Brownian motion,
this means that D(t)−Γ(t)−D(0)+Γ(0) has a variance σ2t.
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Figure 10: Social welfare as a function of Bmax when
σ and ζ are scaled by the same factor. Bmax is ex-
pressed in unit of energy with 1 u.e. = σ4/ζ3. The
y-axis is in log-scale.

For a fixed scaling of the volatility σ, by Theorem 4 the
optimal storage size decreases as the cube of the scaling
factor of the ramping constraint ζ. This is illustrated in
Figure 11(b), where we consider a fixed σ, and we scale ζ by
factors y = 1, 2, 3, 4. We plot the optimal social welfare, and
we observe the decreasing values of optimal energy capacity
10, 1.5, 0.5, 0.3 (≈ Θ(y−3)).
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Figure 11: Social welfare as a function of the energy
capacity Bmax when one of σ or ζ is fixed. The plot
is log-log scale. Bmax is expressed in unit of energy
with 1 u.e. = σ4/ζ3.

8. CONCLUSION
We have shown that under the price-taking assumption,

electricity markets remain efficient when we introduce stor-
age capabilities in the system: they lead to an efficient al-
location of generation and storage control and smooth the
prices. However, we have shown that there is no incentive
for consumers or third-party actors to install large storage
devices, despite the fact that the required storage capacity
needed to accomodate real-time flucuations explodes with
high variability.

There are still many open questions. A first question con-
cerns the case of oligopolies: Does the market remain ef-
ficient if a small number of players can influence prices?
Another question is whether the market efficiency results
also hold in a physical network as described in [27]. More
specifically, how are these results affected by the placement
of storage devices in such a network? Finally, the lack of



incentives for actors to install large storage capacity raises
the question of designing political incentives to encourage
the development of storage systems.

APPENDIX
A. PROOF OF THEOREM 1

To derive socially optimal controls, we use the following
structural properties for the value function V :

Lemma 1. (i) (r, b) 7→ V (r, b) is concave.
(ii) V is sub-additive: for all r− ≤ r+ and b− ≤ b+,

V (r−, b−) + V (r+, b+) ≤ V (r−, b+) + V (r+, b−).

(ii) For all b− ≤ b+, and r:

0 ≤ V (r, b+)− V (r, b−) ≤ (b+ − b−)(v + cbo).

The proof of the above lemma is postponed at the end
of this section. Let us first prove the optimality of g?. We
start from a reserve R(0) = r and storage B(0) = b. The
storage control is fixed and optimal. Note that due to the
convexity of V , ∂V

∂r
is well defined almost everywhere. Let

δ > 0. We denote by d(δ) =
∫ δ
0
Z(t)dt, and by b′ = B(δ).

Consider two production controls g1 and g2 different over
[0, δ], but equal to the optimal control after δ. Denote by V1

and V2 the expected social welfare obtained using g1 and g2,

respectively. Define ξ1 = 1
δ

∫ δ
0
g1(t)dt and ξ2 = 1

δ

∫ δ
0
g2(t)dt.

We can easily show that:

V1 − V2 = e−γδE[V (r + ξ1δ − d(δ), b′)

− V (r + ξ2δ − d(δ), b′)] +O(δ2)

= δ(ξ1 − ξ2)
∂V

∂r
(r, b) +O(δ2).

We deduce that the optimal production control g? is such
that g? = ζ+ if ∂V

∂r
> 0 and g? = ζ− if ∂V

∂r
< 0. Now since V

is concave, the threshold function φ(b) = sup{r : ∂V
∂r
≥ 0} is

well defined, and for r < φ(b) (resp. r > φ(b)), the optimal
production control is g? = ζ+ (resp. ζ−). The fact that φ
is decreasing is directly deduced from (ii) in Lemma 1.

Next we prove the optimality of u?. We establish that
u? is optimal when starting from a reserve r = R(0) over
a small time interval [0, δ]. The production control is fixed,
and we denote by r′ = R(δ). Let b = B(0).

Case 1: r > Cmax and δ > 0 is such that R(s) ≥ Cmax

for all s ∈ [0, δ] (a.s.). We have u?(s) = −Cmax for all
s ∈ [0, δ]. If this control is used, the expected social welfare is
denoted by V1. Now assume that instead we use the control
u ∈ [−Cmax, Dmax], in which case, the expected welfare is
V2. At time δ, under control u?, the state of the storage is
b+ c1, and under u, it is b+ c2. We have:

c1 = ηδCmax ≥ −
∫ δ

0

(ηu(s)1u(s)<0 + u(s)1u(s)≥0)ds = c2.

Now, observe that there is no blackout in [0, δ] under both
controls, and hence:

V1 − V2 = e−γδE[V (r′, b+ c1)− V (r′, b+ c2)] ≥ 0.

Case 2. r ∈ (0, Cmax) and δ > 0 is such that Cmax ≥
R(s) ≥ 0 for all s ∈ [0, δ] (a.s.). We have u?(s) = −R(s)
for all s ∈ [0, δ]. If this control is used, the expected social
welfare is denoted by V1. Now assume that instead we use

the control u ∈ [−Cmax, Dmax], in which case, the expected
welfare is V2. At time δ, under control u?, the state of
the storage is b + c1, and under u, it is b + c2. We have:

c1 =
∫ δ
0
ηR(s)ds, and

c2 = −
∫ δ

0

(ηu(s)1u(s)<0 + u(s)1u(s)≥0)ds

≤ −
∫ δ

0

η(u(s)1u(s)≤−R(s) + u(s)1−R(s)<u(s)<0)ds

≤ −
∫ δ

0

η(u(s)1u(s)≤−R(s) −R(s)1−R(s)<u(s)<0)ds.

We deduce that: c2 − c1 ≤ η
∫ δ
0

(R(s) + u(s))−ds. Now ob-
serve that under control u, if R(s) + u(s) < 0 we have a
blackout, and hence:

V1 − V2 =(v + cbo)

∫ δ

0

dse−γs(R(s) + u(s))−

+ e−γδE[V (r′, b+ c1)− V (r′, b+ c2)].

From (iii) in Lemma 1,

V1 − V2 ≥ (1− η)(v + cbo)

∫ δ

0

ds(R(s) + u(s))− ≥ 0.

Case 3: r = Cmax. This case can be handled by combining
the arguments involved in the two first cases, and decompos-
ing the interval [0, δ] into the two sets where R(s) ≥ Cmax

and 0 ≤ R(s) < Cmax.
The cases where r ≤ 0 can be treated in a similar way.

A.1 Proof of Lemma 1
For (i), we define by (R?1, u

?
1) (resp. (R?2, u

?
2)) the op-

timal reserve and storage control processes when starting
at (r1, b1) (resp. (r2, b2)). For any θ ∈ (0, 1), the pro-
cesses (θR?1 + (1 − θ)R?2, θu

?
1 + (1 − θ)u?2) correspond to

feasible controls when the system starts in state (r, b) =
(θr1 + (1− θ)r2, θb1 + (1− θ)b2). Hence:

V (r, b) ≥ E
∫ ∞
0

e−γtW (R(t), u(t))dt

≥ θV (r1, b1) + (1− θ)V (r2, b2),

where the last inequality is obtained by concavity of W (r, u).
Thus V is concave.

(ii) can be proved using the same method as for (i). Re-
garding (iii), let b− ≤ b+ and u− and u+ be optimal controls
starting from b− and b+. Let B+ be the storage level process
starting at b+ under control u+. We introduce the control
u (and the corresponding storage level process B that starts
from b−):

u(t) =

{
u+(t) if B(t) > 0 or u+(t) < 0
0 otherwise

By abuse of notation, we denote V (u) the value function
of the control u. As u− is optimal starting from b− and u is
a valid control starting from b−, we have:

V (b+)− V (b−) = V (u+)− V (u)

= E

[∫ ∞
0

e−γt(v + cbo)[(R(t) + u(t))− − (R(t) + u+(t))−]dt

]
≤ E

[∫ ∞
0

(v + cbo)(u+(t)− u(t))dt

]
≤ (v + cbo)(b+ − b−).



The first inequality is obtained remarking that x 7→ −(R +
x)− is 1-lipschitz. The last inequality is obtained by combin-

ing the facts that b+−B+(T ) =
∫ T
0
f(u+(t))dt, b−−B(T ) =∫ T

0
f(u(t))dt, where f(x) = x(1x>0 + η1x≤0), and that by

construction B(T ) ≤ B+(T ) for any T – the inequality is
deduced by letting T →∞.

B. PROOF OF THEOREM 2
To simplify notations, we define E = (ED, ES , G, u) and

we write E ∈ XC if ED ∈ XD and (ES , G, u) ∈ XS . To
emphasize the dependence of the social welfare on the pro-
cess E, we use the notations W(E). Similarly we denote by
WD(ED, P ) and WS(ES , G, u, P ) the welfares of the con-
sumer and the supplier. Moreover, we define the inner prod-
uct of two stochastic processes F1 and F2 as:

〈F1, F2〉 := E

∫ ∞
0

e−γtF1(t)F2(t)dt.

Using this notation, the consumer’s welfare becomesWD :=
〈WD,1〉, where 1 is the constant process, always equal to 1.
The proof is detailed for scenario A3.

To prove the result, we proceed as in [27] and we inter-
pret the social welfare optimization problem as the problem
of maximizing WD(ED, P ) + WS(ES , G, u) subject to the
constraints E ∈ XC and ED = ES . The last constraint
is relaxed, and the price process P serves as corresponding
Lagrange multipliers. The Lagrangian is:

L(E,P ) = −W(E) + 〈P,ED − ES〉
= −WD(ED, P )−WS(ED, G, u, P ).

The dual function h is defined as: h(P ) = infE∈XC L(E,P ).
Let E ∈ XC . If ED = ES , weak duality holds:

h(P ) ≤ L(E,P ) = −W(E).

We further establish that for Ee ∈ XC such that EeD = EeS ,
(Ee, P ) is a competitive equilibrium if and only if h(P ) =
−W(E).

1. Assume that (Ee, P ) is a competitive equilibrium. Then:

h(P ) = inf
E∈XC

L(E,P )

= inf
E∈XC

(−WD(ED, P )−WS(ES , G, u, P ))

= − sup
ED∈XD

WD(ED, P )

− sup
(ES ,G,u)∈XS

WS(ES , G, u, P )

= −WD(EeD, P )−WS(EeS , G
e, ue, P )

= L(Ee, P ) = −W(E).

2. Conversely, assume that under (Ee, P ), h(P ) = −W(E).
Since (EeD, E

e
S) ∈ XT , we deduce that: h(P ) = L(Ee, P ),

which in turn implies that:

− sup
ED∈XD

WD(ED, P )− sup
(ES ,G,u)∈XS

WS(ES , G, u, P )

= −WD(EeD, P )−WS(EeS , G
e, ue, P ).

3The only difference for the two other scenarios concerns the
notations i.e., replacing WD(ED, P ) and WS(ES , G, u, P )
by WD(ED, u, P ) and WS(ES , G, P ) for scenario B and by
WD(ED, P ), WS(ES , G, P ) and WD(u, P ) for scenario C

We conclude that EeD maximizes the welfare from the
consumer’s perspective, and that (EeS , G

e, ue) maxi-
mizes supplier’s welfare under price process P .

From the above analysis, we deduce that any competitive
equilibrium maximizes the social welfare. Now let (Ee, P e)
be a competitive equilibrium, and let E ∈ XC be socially
optimal. Since both E and Ee maximize the social welfare,
we have: −W(E) = −W(Ee) = h(P e). This implies that
(E,P e) is a competitive equilibrium.

C. PROOF OF THEOREM 3
The proof of the theorem consists in showing that un-

der the price process P ?, the controls maximizing the social
welfare are also optimal from the consumer’s and supplier’s
perspectives.

The technical difficulties of the proof are concentrated on
the following result (Lemma 2) that relates the price process
P ? and the value function of the social planner problem
V . It is the key results to show that the social and selfish
problems coincide.

Lemma 2. Let P ? be the price process defined by Equa-
tion (11) and V the value function for the social planner’s
problem, defined by Equation (10). Then, we have:

∂V

∂r
(r, b) = Er,b

∫ ∞
0

e−γt(P ?(t)− c)dt.

The proof of this lemma is technical and is detailed at the
end of the section (§C.4).

We now detail how to use this results when the storage is
at the supplier (§C.1), the consumer (§C.2) or is an stand-
alone player (§C.3).

C.1 Storage is at the Supplier
We now prove that, under price P ?, the choice E?S =

E?D = Γ+G?+u? optimizes both the consumer’s welfare and
the supplier’s welfare.

Consumer – The consumer’s welfare is

E

∫ ∞
0

e−γt−(v+cbo)(ED(t)−D(t)+rda)−−P ?(t)ED(t)dt.

As there is no ramping constraints in the consumer’s opti-
mization (i.e., ED∈XD), an optimal strategy is myopic in
the sense that for any t≥0, an optimal strategy E?D(t) satis-
fies E?D(t) ∈ arg maxe{−(v+cbo)(e−D(t)+rda)−−P ?(t)e}.

Recall that R?=G?+Γ?−D+rda. We consider three cases:

1. When P (t) = 0 (i.e. R?(t) + u?(t) > 0) any e ≥
D(t) − rda maximizes the consumer’s payoff. Thus
E?D(t) = Γ(t) + G?(t) + u∗(t) > D(t)− rda is optimal
for the consumer.

2. When 0<P ?(t)<(v+cbo) (i.e. when R?(t)+u?(t)=0),
her payoff is maximized for E?D(t) = D(t) − rda =
Γ(t) +G?(t) + u∗(t).

3. When P (t) = v + cbo, her payoff is maximized for any
E?D(t) ≤ D(t)−rda. Thus, E?D(t) = Γ(t) + G?(t) +
u∗(t) < D(t)− rda is optimal for the consumer in that
case.

Supplier. It remains to show that (G?, u?) maximizes the
welfare of the supplier. By assumption (A1-A3), the real



time price P (t) and and the generation of renewable energy
Γ(t) are uncontrollable by the players. Moreover, as ES(t) ≤
Γ(t)+u(t)+G(t) and the payoffs of the supplier is increasing
in ES , a supplier will chose ES(t) = Γ(t)+u(t)+G(t). Thus,
a direct computation shows that the welfare of the supplier
can be solely expressed as a function of the reserve process R
and the control process u. Her payoff can be written (up to
uncontrollable parts) as WS(t) = P ?(t)(R(t)+u(t))−cR(t).

We define by XR the set of possible production controls:
(R, u) ∈ XS iff R ∈ XR and u ∈ XB . This decomposition is
possible because the constraints on production and storage
are not coupled. Observe that the optimal control problem
that the supplier solves is equivalent to:

max
(R,u)∈XS

E
∫ ∞
0

e−γt(P ?(t)(R(t) + u(t))− cR(t))dt.

The corresponding value function VS(r′, b) is:

VS(r′, b) = sup
(R,u)∈XS

E(r′,b)

∫ ∞
0

e−γt

[P ?(t)(R(t) + u(t))− cR(t)]dt.

We have VS(r′, b) = VR(r′) + VB(b) where

VR(r′) = sup
R∈XR

Er′
∫ ∞
0

e−γt(P ?(t)− c)R(t)dt (14)

VB(b) = sup
u∈XB

Eb
∫ ∞
0

e−γtP ?(t)u(t)dt. (15)

Optimality of R?: From the above expression, we simply
deduce that:

∂VR
∂r′

= Er′
∫ ∞
0

e−γt(P ?(t)− c)dt.

From Lemma 2, we conclude that ∂VS
∂r

= ∂V
∂r

, and hence R?

also maximizes the supplier’s welfare.
Optimality of u?: As P ∗(t) ≥ 0, it should be clear that

∂VB/∂b ≥ 0. Next, we show that ∂VB/∂b ≤ (v + cbo). Now
let b ≤ b′. Using the same argument as in the proof of (iii)
of Lemma 1, we obtain:

VB(b′)− VB(b) ≤ (v + cbo)(b′ − b).

This shows that ∂VB/∂b ≤ (v + cbo).
We show next that when 0 < P ∗(t) < v + cbo, ∂VB/∂b =

P ∗(t). To see that, we consider a discharge control dε(t) =√
ε1t≤√ε, which is such that

∫
t
dε(t)dt = ε. Let ub and ub+ε

be the optimal control starting from b and b+ ε. We have:

V (b+ ε)− V (b) ≥ V (ub + dε)− V (ub) = P ∗(t)ε+ o(ε)

V (b+ ε)− V (b) ≤ V (ub+ε)− V (ub+ε − dε) = P ∗(t)ε+ o(ε)

Therefore, ∂VB/∂b = P ∗(t).
As 0 ≤ ∂VB/∂b ≤ (v + cbo), it should be clear that when

P ∗(t) = 0 (or P ∗(t) = v+cbo), the control u that maximizes
the welfare of the storage owner satisfies u(t) = −Cmax (or
P ∗(t) = Dmax). Furthermore, when 0 < P ∗(t) < v + cbo,
∂VB/∂b = ∂V/∂b, and hence u? is also optimal in this case.

C.2 Storage is at the Consumer
Consumer. Recall from §3.4 that the consumer’s payoff is

−(v + cbo)(ED(t) + u(t)−D(t) + rda)− − P ?(t)ED(t).

Let us denote Eu(t) = ED(t) + u(t). The consumer’s payoff
can be rewritten as

−(v + cbo)(Eu(t)−D(t) + rda)− − P ?(t)Eu(t) + P ?(t)u(t)).

As ED(t) is unconstrainted, Eu(t) is also unconstrainted.
Therefore, the process E∗u that maximizes the welfare asso-
ciated with −(v + cbo)(Eu(t) − D(t) + rda)− − P ?(t)Eu(t)
is the same as the process of ED that maximizes the con-
sumer’s welfare in §C.1: E?u(t) = Γ(t) +G∗(t) + u∗(t).

Moreover, as ED is unconstrainted, the choice of u is not
constrained by the choice of Eu. Thus, maximizing the wel-
fare associated with P ?(t)u(t) is the same as maximizing
(15) in §C.1. This shows that u∗(t) is optimal from a con-
sumer’s perspective.

Combining the two results, we get that E∗D(t) = Γ(t) +
G∗(t) and u∗(t) are optimal for the consumer.

Supplier. As in §C.1, a direct computation shows that the
supplier seeks to maximize (14) and has the same constraints
as in §C.1. Thus, its optimal generation process is also G∗

and ES = Γ +G∗.

C.3 Stand-Alone Storage Operator
The proof for this scenario comes from the proof for the

scenario when the storage is at the supplier. When there is
a stand-alone storage operator, we have three payers:

• A consumer, that has the same welfare and constraints
of the consumer of C.1.

• A supplier that optimizes Equation (14).

• A storage operator that optimizes Equation (15).

We have shown in C.1 that that the optimization problem
of a supplier that controls both generation and storage can
be decomposed in two independent optimization problems:
one for the generation (Eq (14)) and one for the use of the
storage (Eq. (15)). Hence, even if Equations (14) and (15)
are controlled by two independent players, they will lead to
the same socially optimal controls.

C.4 Smoothness of Prices
Before proving Lemma 2, we first start by a results that

provide a direct formula for the derivative of the value func-
tion.

Lemma 3. Let V be the value function associated to the
social planner’s problem (Equation (10)). Then:

(i) Let R?, B? be the reserve and storage process starting
from (r, b) and let T and τ be the first time that B?(t)
hits 0 and Bmax for the first time, i.e.,

T = inf{t | B?(t) = 0} and τ = inf{t | B?(t) = Bmax}.

∂V

∂b
= (v + cbo)E

[
e−γT1{T<τ}

]
. (16)

(ii) ∂V
∂b

(r, b) is continuous in (r, b) for all (r, b) ∈ R∗ ×
(0;Bmax).

(iii) If r < 0, then limb→0 ∂V/∂b(r, b) = (v + cbo).

(iv) If r > 0, then limb→Bmax ∂V/∂b(r, b) = 0.



Proof. Let (r, b) ∈ R∗ × (0;Bmax) and let ε > 0. Let
(R,B) be an optimal reserve and storage process starting
from (r, b) and let u be the associated storage control. We
define a storage process Bε and its storage control uε by:

Bε(0) = b+ ε

uε(t) =

max(−R(t),−Cmax) if R(t)≥0 ∧Bε(t)<Bmax,
min(−R(t), Dmax) if R(t)<0 ∧Bε(t)>0,
0 otherwise.

We also define the two associated stopping times Tε and τε:

Tε = inf{t | Bε(t) = 0};
τε = inf{t | Bε(t) = Bmax}.

By definition of B and Bε, for all t, we have

B(t) ≤ Bε(t) ≤ B(t) + ε.

In particular, this implies thatB−ε hits 0 beforeB(t). Hence:
T ≤ Tε and τε ≤ τ .

Let us now compare the welfare of the reserve and storage
process R,Bε and R,Bε. We have:

W (R,Bε)−W (R,B) = E

∫ ∞
0

e−γt(v + cbo)
[
(R(t) + u(t))−

−(R(t) + uε(t))
−
]
dt.

By definition of u and uε, we have u(t) ≤ uε(t) for all t.
Hence, for all t, we have, (R(t) + u(t))− ≥ (R(t) + uε(t))

−.
Assume that for a given sample path, we have Tε < τε.

Then for all t < Tε, either u(t) = uε(t) or B(t) = 0, R(t) < 0
and Bε(t) > 0. In particular, this implies that

• (R(t) + u(t))− ≥ (R(t) + uε(t))
− = uε(t)− u(t) for all

t < Tε;

• u(t) = uε(t) for all t < T ; and

• B(Tε) ≤ Bε(Tε) = 0.

• For all t > Tε, we have B(t) ≤ Bε(t) and u(t) = uε(t).

Hence: ∫ ∞
0

e−γt
[
(R(t) + u(t))− − (R(t) + uε(t))

−
]
dt

=

∫ Tε

T

e−γt(uε(t)− u(t))dt

≥ e−γTε

∫ Tε

T

(uε(t)− u(t))dt

= εe−γTε .

Therefore,

W (R,Bε)−W (R,B) ≥ (v + cbo)E
[
1{Tε<τε}e

−γTε

]
.

Recall that T is the time at which the storage hits 0.
Since the derivative of B is of the same sign as R, we have
R(T ) ≤ 0. Moreover, it should be clear that R(T ) 6= 0
almost surely.

Assume that R(T ) < 0. As the function t 7→ R(t) is
continuous, then there exists δ, ξ > 0 such that if t ≤ T + ξ,
then R(t) ≤ −δ. This implies that if ε ≤ δξ, then Tε ≤
T + ξ. Hence, Tε converges to T almost surely as ε goes to
0. Similarly, we have also τε → τ . This shows that the right
derivative of V with respect to b is greater than (16).

Let us now consider a sequence of initial condition (rb, bn)
that goes to (r, b) as n goes to infinity. Because of the form
of the optimal control (Theorem 1), it should be clear that
the corresponding sequence of optimal reserve and storage
processes R?n, B

?
n converges to R?, B? almost surely. More-

over, if R(T ) 6= 0, the corresponding stopping time Tn and
τn converge almost surely to T and τ . This implies that the
right derivative of V w.r.t b is continuous in (r, b). As V is
concave, this implies that V is differentiable everywhere and
satisfies (16). This concludes the proof of (i) and (ii).

(iii) and (iv) comes directly from Equation (16):

• When r < 0 and b → 0, we have T < τ almost surely
and limb→0 T = 0. This implies (iii).

• When r > 0 and b → Bmax, we have T > τ almost
surely. This implies (iv).

C.4.1 Proof of Lemma 2
Let ε (typically small) and let R,B be the optimal reserve

and storage process starting from (r, b). Let uε be a storage
control process on [0; ε] that is equal to the optimal storage
control when the reserve is R+ε and the initial storage level
is B(0). uε is defined as in (9):

uε(t) =

 max(−R(t),−Cmax) if R(t) ≥ 0 and Bε < Bmax,
min(−R(t), Dmax) if R(t) < 0 and Bε > 0,
0 otherwise.

with Bε(t) = B(0) +
∫ t
0
−uε(s)(1{uε(s)>0}+ η1{uε(s)<0})ds.

The process (R,B) is optimal when starting from (r, b).
Thus:

V (r, b) = E
[ ∫ ε

0

e−γtW (R(s), B(s))ds+e−γεV (R(ε), B(ε))
]
.

The process (R + ε,Bε) is suboptimal when starting from
(r + ε, b). Hence, we have:

V (r+ε.b) ≥ E
[ ∫ ε

0

e−γtW (R(s)+ε,Bε(s))ds+e
−γεV (R(ε)+ε,Bε)

]
= E

[ ∫ ε

0

e−γtW (R(s) + ε,Bε(s))ds

+ e−γε[V (R(ε) + ε,Bε(ε))− V (R(ε) + ε,B(ε))]

+ e−γεV (R(ε) + ε,B(ε))
]

This shows that V (r, b)− V (r + ε, b) is greater than:

E
[ ∫ ε

0

e−γt(W (R,B)−W (R+ ε,Bε))ds

+ e−γε[V (R(ε) + ε,Bε(ε))− V (R(ε) + ε,B(ε))]

+ e−γεV (R(ε,B(ε))− V (R(ε) + ε,B(ε))
]

(17)

Let us now define a process Bε on all t ≥ 0. It is left-
continuous on all interval of the form (kε; (k + 1)ε], and
corresponds to the storage control uε on these interval. It
is reseted to B(kε) at (kε)−. This means that for all t ∈
(kε; (k + 1)ε]:

B(t) = B(kε) +

∫ s

0

−uε(s)(1{uε(s)>0} + η1{uε(s)<0})ds.

Although Bε is not a valid storage process on [0;T ] (it can
be discontinuous on the points kε), it is valid on all interval



[kε; (k + 1)ε]. Thus, iterating the inequality (17), V (r, b) −
V (r + ε, b) is greater than or equal to

E
[ T/ε∑
k=1

∫ kε

(k−1)ε

e−γt(W (R,B)−W (R+ ε,Bε)ds (18)

+e−kγεV (R(kε)+ε,B(kε))−V (R(kε)+ε,Bε(kε))
]

(19)

+e−γTE[V (R(T ), B(T ))− V (R(T ) + ε,B(T ))]. (20)

For all k ∈ {1 . . . , T/ε], we define Gk and Hk by:

Gk :=

∫ kε

(k−1)ε

e−γt(W (R,B)−W (R+ ε,Bε)ds

Hk :=V (R(kε)+ε,B(kε))− V (R(kε)+ε,Bε(kε))

We distinguish 5 cases:

1. For all t ∈ Ik: R?(t) ∈ (Cmax; +∞). In that case, for
all t ∈ Ik, we have u(t) = uε(t) = −Cmax if B(t) =
Bε(t) < Bmax and u(t) = uε(t) = 0 otherwise. Thus:
B(kε) = Bε(kε) and we have:

Gk =

∫ kε

(k−1)ε

e−γtcεdt = ε

∫ kε

(k−1)ε

(−P ?(t) + c)dt.

Hk = 0.

2. For all t ∈ Ik: R?(t) ∈ (−∞;−Dmax − ε). In that
case, for all t ∈ Ik, we have u(t) = uε(t) = Dmax if
B(t) = Bε(t) > 0 and u(t) = uε(t) = 0 otherwise.
Thus, we again have B(kε) = Bε(kε) and:

Gk =

∫ kε

(k−1)ε

e−γt(c− (v + cbo))εdt

= ε

∫ kε

(k−1)ε

(−P ?(t) + c)dt.

Hk = 0.

3. For all t ∈ Ik: R?(t) ∈ (0;Cmax − ε). In that case, if
Bε(t) < Bmax for all t ∈ Ik, then we have u(t) = −R(t)
and uε(t) = −R(t)−ε. This leads to Bε(kε) = B(kε)+
ηε2. Hence:

Gk = ε

∫ kε

(k−1)ε

e−γtcdt.

Hk = V (R(kε)+ε,B(kε))− V (R(kε)+ε,B(kε) + ηε2)

= −ηε2 ∂V
∂b

(R(kε) + ε,B(kε)) + o(ε2)

= −ε2P ?(kε) + o(ε2),

= ε

∫ kε

(k−1)ε

eγ(kε−t)(−P ?(t))dt+ o(ε2).

The last two equalities contains terms in o(ε2) due to
the fact that derivative ∂V/∂b is continuous in (r, b)
and that P ?(kε) = (∂V/∂b)(R(kε), B(kε)). Note that
because R is continuous on [0;T ], it is uniformly con-
tinuous. Hence, the hidden constants in the o(ε) are
uniform and do not depend on k.

Note that if there exists t such that Bε(t) = Bmax,
then the same equality holds using Lemma 3-(iv).

4. For all t ∈ Ik: R?(t) ∈ (−Dmax;−ε). If B(t) > 0 for
all t ∈ Ik, then we have u(t) = −R(t) and uε(t) =

−R(t)− ε. This leads to Bε(kε) = B(kε) + ε2. Thus,
we have:

Gk = ε

∫ kε

(k−1)ε

e−γtcdt

Hk = V (R(kε)+ε,B(kε))− V (R(kε)+ε,B(kε) + ε2)

= −ε2 ∂V
∂b

(R(kε) + ε,B(kε)) + o(ε2)

= −ε2P ?(kε) + o(ε2)

= ε

∫ kε

(k−1)ε

eγ(kε−t)(−P ?(t))dt+ o(ε2).

As before, if there exists t such that B(t) = 0, then
the same inequality holds using Lemma 3-(iv).

5. If none of the above property is satisfied, then there
exists t ∈ Ik such that R?(t) 6∈ {−Dmax, 0, Cmax} ± ε.
By definition of the total payoff Eq.(8), we have:

|W (R(t), B(t))−W (R(t) + ε,Bε(t))| ≤ (v + cbo)ε.

Moreover, by definition of uε, we have |Bε(kε)−B(kε)| ≤
ε2. As |∂V/∂b| ≤ (v + cbo), this implies that

|V (R(kε), B(kε))− V (R(kε) + ε,Bε(kε))| ≤ (v + cbo)ε2.

In particular, this implies Gk=O(ε2) and Hk=O(ε2).

By lemma 4 (that we prove in the next section), there are
at most o(1/ε) intervals of the form [(k − 1)ε; kε] that cor-
responds to the fifth case of the previous analysis.

T/ε∑
k=1

Gk + e−kγεHk = ε

∫ T

0

e−γt(c− P ?(t))dt+ o(ε)

This shows that, almost surely,

lim
ε→0

1

ε

T/ε∑
k=1

Gk + e−kγεHk

 =

∫ T

0

e−γt(P ?(t)− c)dt.

Moreover, it should be clear that
∣∣∣∑T/ε

k=1Gk + e−kγεHk

∣∣∣ /ε ≤∫ T
0
e−γt(v+cbo+c)dt ≤ (v+cbo+c)/γ almost surely. Hence,

applying the dominated convergence, we can exchange the
expectation and the limit as ε goes to 0 to show that as ε
goes to 0, Eq.(18-19)/ε is equal to

lim
ε→0

1

ε
E

T/ε∑
k=1

Gk + e−kγεHk

 = E lim
ε→0

1

ε

T/ε∑
k=1

Gk + e−kγεHk


=

∫ T

0

e−γt(P ?(t)− c)dt.

Moreover, Equation (20) is less than e−γT (v + cbo + c)ε/γ
and is therefore negligible for high T . Hence, by letting T
goes to infinity, we have

∂V

∂r
≤ E

∫ ∞
0

e−γt(P ?(t)− c)dt.

The converse inequality can be obtained using similar argu-
ments.



C.4.2 Lemma 4

Lemma 4. Let R? be the optimal reserve process. For
all T < ∞, with probability one, the number of intervals
[kε, (k + 1)ε] such that k ≤ T/ε and R?(t) is at distance ε
of 0, Cmax or Dmax in this interval grows slowlier that 1/ε.
More precisely, if we denote Sε = [−Dmax − ε,Dmax+ε] ∪
[−ε, ε] ∪ [Cmax − ε, Cmax + ε], then:

lim
ε→0

ε · (#{k | ∃t ∈ [kε; (k+1)ε] : R?(t) ∈ Sε}) = 0 a.s.

Proof. For all ε > 0 and k < T/n, we denote Iε,k :=
[kε; (k + 1)ε]. We define the set Aε by

Aε =
⋃{

Iε,k | ∃t ∈ In,ε s.t. R?(t) ∈ Sε
}
.

We denote by A the limit of the Aε: A =
⋂
ε>0Aε. The

limit set A is the closure of the set B, defined by

B := {t | R?(t) ∈ {−Dmax, 0, Cmax}}.

As R?(t) is continuous, B is closed and therefore A = B.
The reserve process R? is the sum of a Brownian motion

Z = Γ−D of volatility σ and a function G that is constraints
by the ramping constraints ζ+ and ζ−. This shows that

P (R?(t) = 0) = P (Z(t)−G?(t) = 0)

= lim
δ→0

P (Z(t)− Z(t− δ) = G?(t)− Z(t− δ))

≤ lim
δ→0

P (Z(t)− Z(t− δ) +G?(t− δ) ∈ [−ζ−δ; ζ+δ])

≤ lim
δ→0

(ζ− + ζ+)δ
1

σ
√
δ
√

2π
= 0.

The last inequality comes from the fact that Z(t)−Z(t−δ)+
G?(t−δ) has a normal distribution of variance δσ2 and the
one before from the ramping constraints of G?.

Therefore, for all t, R?(t) 6= 0 almost surely. Hence, by
Fubini, the expectation of the Lebesgue measure of A is zero.
This shows that with probability one, the Lebsgue measure
of Aε goes to 0 as ε goes to 0 and concludes the proof.

D. PROOF OF THEOREM 4
Let (R,B) be a reserve and storage level process when the

parameters of the system are (σ, ζ+, ζ−, Bmax, Cmax, Dmax, γ).
Let Gx,y be a generation process defined by

Gx,y(t) =
x2

y
G

(
y2

x2
t

)
The generation process G satisfies the ramping constraints
ζ− and ζ+, i.e. for all t > t′, we have ζ−(t − t′) ≤ G(t) −
G(t′) ≤ ζ+(t − t′). This implies that for all t > t′, we have
yζ− ≤ Gx,y(t)−Gx,y(t′) ≤ yζ+(t−t′). Thus, the generation
process Gx,y satisfies the constraints yζ− and yζ+.

Let Zx,y be a demand minus renewable generation process
defined by

Zx,y(t) =
x2

y
Z

(
y2

x2
t

)
Recall that if Y is a Brownian motion with volatility σ, then
t 7→ αY (βt) is a Brownian motion with volatility α

√
β. As

the process Z is a Brownian motion with volatility σ, the
process Zx,y is a Brownian motion with volatility

x2

y

√
y2

x2
σ = xσ.

Finally, we define the storage level process Bx,y and its
corresponding control ux,y as

Bx,y(t) =
x4

y3
B

(
y2

x2
t

)
and ux,y(t) =

x2

y
u

(
y2

x2
t

)
By Equation (1), the storage B evolves as

∂B

∂t
= −u(t)(1{u(t)>0} + η1{u(t)<0}).

The derivatice of Bx,y with respect to time is x2/y times the
derivative of B with respect to time. Thus, Bx,y evolves as

∂Bx,y

∂t
= −x

2

y
u(t)(1{u(t)>0} + η1{u(t)<0})

= −ux,y(t)(1{u(t)>0} + η1{u(t)<0}).

This shows that ux,y corresponds indeed to the control of
Bx,y. Moreover, since Cmax and Dmax have been scaled by
x2/y, ux,y is a valid control. Therefore, the storage level
process Bx,y is a valid storage process for the scaled model.

Finally, as the reserve process R and the storage control
u are both multiplied by x2/y, the social payoff, defined by
Equation (8) is multiplied by x2/y.

This shows that there is a one to one correspondence be-
tween the reserve and storage level processes for the param-
eters (σ, ζ+, ζ−, Bmax, Cmax, Dmax, γ) and for the parame-

ters (xσ, yζ+, yζ−, x
4

y3
Bmax,

x2

y
Cmax,

x2

y
Dmax,

x2

y2
γ). Hence,

if the process (R,B) is optimal for the first set of parame-
ters, then the process (Rx,y, Bx,y) is optimal for the scaled
parameters.
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