Outline of Part IV

- Games and equilibria
- Nash dynamics
- Fictitious play
- No-regret dynamics
- Trail and error learning

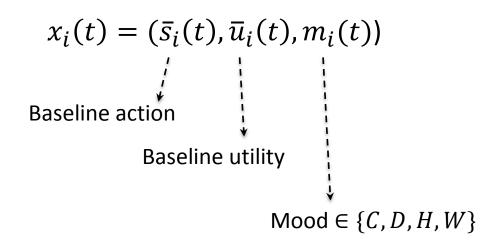
Learning by trials and errors (Young, 2008)

Algorithm

- Marden et al.: experiment rarely, and compare with the average payoff received over long periods. Adopt the new action when it leads to significantly better payoff.
 - Work for weakly acyclic games (convergence to NEs)
- New idea: experimentations triggered by decreases in payoffs
 - Convergence to NEs in games where a pure NE exists
 - Proof of convergence: uses Freidlin-Wentzell perturbation theory
 - Hereafter, synchronous moves

Algorithm

Idea: enrich the *state* of agent



Algorithm: content

At the beginning of each time period t: if $m_i(t) = C$

- Play benchmark action w.p. 1-ε
 - If $u_i(a) > \overline{u_i}$, become hopeful
 - If $u_i(a) = \overline{u_i}$, be content
 - If $u_i(a) < \overline{u_i}$, become watchful
- Explore and play a_i randomly chosen
 - If $u_i(a) > \overline{u_i}$, adopt a_i and update your benchmarks
 - If $u_i(a) \leq \overline{u_i}$, don't change anything

Algorithm: watchful

At the beginning of each time period t: if $m_i(t) = W$, play benchmark action

- If $u_i(a) > \overline{u_i}$, become hopeful
- If $u_i(a) = \overline{u_i}$, be content
- If $u_i(a) < \overline{u_i}$, become discontent

Don't change the benchmarks

Algorithm: hopeful

At the beginning of each time period t: if $m_i(t) = H$, play benchmark action

- If $u_i(a) > \overline{u_i}$, become content, update $\overline{u_i} = u_i(a)$
- If $u_i(a) = \overline{u_i}$, become content
- If $u_i(a) < \overline{u_i}$, become watchful

Algorithm: discontent

At the beginning of each time period t: if $m_i(t) = D$, play a random action a_i

- Become content; adopt the new action and update the benchmarks with probability $\phi(u_i(a), \overline{u_i})$
- Remain discontent with probability $1 \phi(u_i(a), \overline{u_i})$

Convergence

• Assume that the game as at least one pure NE, and denote by Ω^* the set of pure NEs.

Theorem For any $\delta > 0$, there exists ϵ such that:

$$\lim_{t \to \infty} \inf \frac{1}{t} \sum_{i=0}^{t-1} 1_{\{s(i) \in \Omega^*\}} \ge 1 - \delta$$

Perturbed Markov chains

Idea from **Young**, *The evolution of conventions*, Econometrica 1993

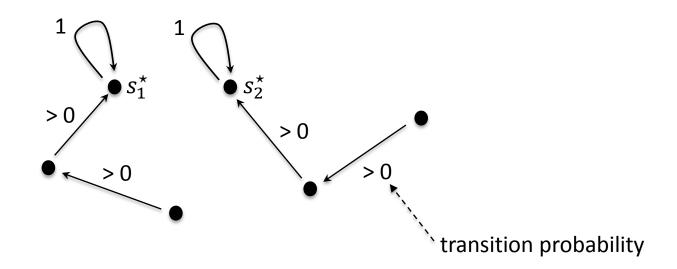
Step 1. Construct a Markov chain absorbed in states maximizing social welfare

Step 2. Perturb the Markov chain to achieve irreducibility

Step 3. Show that in steady-state, the perturbed Markov chain concentrates on socially optimal states

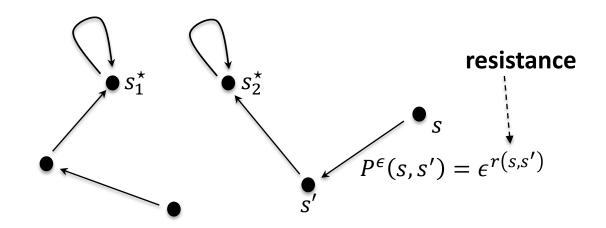
Transient Markov chain

Let Ω^* be the set of socially optimal states.



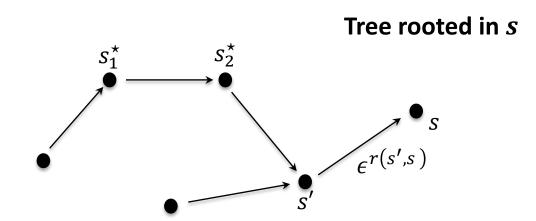
Resistance, rooted trees, potential

Step 2. Irreducible perturbed Markov chain



Resistance, rooted trees, potential

Step 2. Irreducible perturbed Markov chain



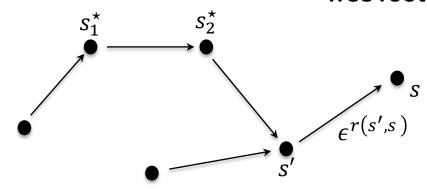
Steady-state distribution:
$$\pi^{\epsilon}(s) \sim \sum_{T \in \text{Tree}_s} \epsilon^{\sum_{(s_1, s_2) \in T} r(s_1, s_2)}$$

Potential of s:
$$\gamma(s) = \min_{T \in \text{Tree}_s} \sum_{(s_1, s_2) \in T} r(s_1, s_2)$$

Resistance, rooted trees, potential

Lemma When $\epsilon \to 0$, π^{ϵ} concentrates on states with minimal potential.

Tree rooted in s



Steady-state distribution:
$$\pi^{\epsilon}(s) \sim \sum_{T \in \text{Tree}_{s}} \epsilon^{\sum_{(s_1, s_2) \in T} r(s_1, s_2)}$$

Potential of s:
$$\gamma(s) = \min_{T \in \text{Tree}_s} \sum_{(s_1, s_2) \in T} r(s_1, s_2)$$