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Parallel Computations 

 Executing iterative algorithms                                in parallel: 

 trivial when         has structure, e.g.  

 or when there is a central coordinator that maintains global state 

 More challenging when state (decision variables) updates are distributed 

 Component-wise parallelization: Each processor responsible for one decision 

variable, executes 

 Selected issues: 

 How to gather states from other processors? 

 What if this information is delayed, noisy, distorted? 

 How to account for asynchronous execution? 
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Asynchronous Model 

 Let     be the set of event times, when some of the processors executes an update. 

 

 Let                be the event times  when processor   updates its state 

 

   

 

   

                    is the most recent version of     available to processor   at time   , and 

was computed at time                      ,  

 

 Information from other processors possibly delayed 

 

 Accounts for asynchronicity and information delay.  
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Total Asynchronism 

 Updates arbitrarily infrequent, information delays arbitrarily long 

 

 Formally, the execution is totally asynchronous if  

 The update sets        are infinite, and 

 For every sequence                   with                          ,  it  

also holds that 

 

 No processor ceases to update and communicate its information. 
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Asynchronous Convergence Theorem 

 Theorem: If there is a sequence of nonempty sets             with 

 

      satisfying 

      (Synchronous convergence condition)    

 

 

and for every sequence            with                          , every limit point of          

is a fixed point of  F  

 

     (Box condition) 

     for every t there exists sets                      such that  

 

 

     Then, if                      , then every limit point of              is a fixed point of F 
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Max-Norm Contractions Under Total Asynchronism 

 Max-norm contraction:  There exists                 such that                 

 

 

 Have unique fixed points, linear convergence rates. 

 

 Also converge under total asynchronism, since 

 

  

      satisfy the conditions of the asynchronous convergence theorem. 

 The gradient method converges totally asynchronously when it is a max-norm 

contraction. 
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Partially Asynchronism 

 An algorithm is called partially asynchronous if 

 During every window of length D, each processor updates at least once 

 The information used by any node is outdated with at most D time units 

 

  If f is convex and has Lipschitz gradient (L > 0), then the gradient method  

 

 

      converges under partial asynchronism, provided that  
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Distributed Optimization over Graphs 

 Convex optimization problem under (logical) communication constraints 

 

 

 

 

 

 

 

 

 

 Nodes can only exchange information with immediate neighbors in G. 
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Example: robust estimation 

 Nodes measure different noisy versions          of the same quantity. 

 

 Would like to agree on common estimate       that minimizes 

 

 

 

      where            is the Huber loss 
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The Dual Approach 

 Introduce local decision vector         and re-write problem on the form 

 

 

 

 

 Relax consistency constraints using Lagrange multipliers, solve dual problem. 

 

 

 

 

 

 Can do with less than consistency on every edge. 
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A Primal Approach 

 For simplicity, drop constraint and consider 

 

 

 

 Can we develop a solution approach that works directly with primal variables? 

 

 Yes, if we introduce local decision vectors and reconcile “sufficiently” well 
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A Two-Step Approach 

 Step 1: Nodes take step in gradient direction 

 

 

 Step 2: Reconcile by forming network-wide average 

 

 

 

 Recovers standard gradient method 

 

 

 

 Network-averaging possible with peer-to-peer exchanges only 
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Distributed Averaging and Consensus 

 Averaging can be performed distributedly 

 

 

 

 For appropriately chosen weights,  

 

 

 

 

 Known as distribtued averaging or average consensus. 

 

14 



Consensus Algorithm 

 For simplicity, consider scalar        . Re-write iterations on matrix form 

 

 

 Convergence to the average  

 

 

      occurs if and only if A satisfies 

 

 

 

 

 Linear convergence rate governed by           . Mixing time 
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Convergence Rate of the Two-Step approach 

 Each optimization step essentially takes          iterations to execute 

 

 So convergence time for strongly convex and L-Lipschitz gradient case is 

 

 

 Do we really need to converge to average before taking next step? 
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The Interleaved Version 

 Can also consider an interleaved version (single consensus iteration) 

 

 

 

 

 Can show that  

 

 

 

 Hence, for fixed step-size, error does not vanish at optimality. 

 Typically studied for non-smooth or stochastic case 

 Convergence rate estimates same flavor as two-phase version 

 Versions that perform a multiple consensus steps also exist 

(B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson, Subgradient methods      

and consensus algorithms for solving convex optimization problems, CDC 2008 ) 
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Alternative Methods 

 Incremental subgradient method: Pass an estimate on the optimum over the 

network with subgradient updates 

 Cyclic 

 Uniform 

 Markov-chain-based (Selects random neighbor to update) 
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Dealing with a Global Constraint 

 Resource allocation over a network 

 

 

 

 Gradient projection method 

 

 

 

 

 Consensus-based projection 

 

 

 Exact when 
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Dealing with a Global Constraint 

  For a single consensus iteration per step, 

 

 

 We recover the method by Ho et al. (Y. C. Ho, L. Servi, and R. Suri. A class of 

center-free resource allocation algorithms. Large Scale Systems, 1:51--62, 

1980.) 

 

 

      where                             satisfies 

 

 Hence, resource constraint is satisfied at all times 
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Summary 

 Asynchronous iterative methods 

 Models for asynchronous and distributed computation 

 Distribute iteration (e.g. gradient descent) on multiple processors 

 Different update rates, different communication delays 

 Total and partial asynchronism 

 Convergence results for totally asynchronous iterations 

 Gradient method under total and partial asynchronism 

 

 Distributed optimization over graphs 

 Optimization with logical constraints: “who can communicate with whom” 

 Techniques for optimizing additive (“per agent”) loss function 

 Dual decomposition 

 Two-step gradient descent/consensus 

 Interleaved gradient descent/consensus 

 An algorithm for maintaining a global constraint. 
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