L ecture 5

Asynchronous lterative Methods and
Distributed Optimization over Graphs

Jie Lu (jielu@kth.se)

Richard Combes
Alexandre Proutiere

Automatic Control, KTH

September 19, 2013

mailto:jielu@kth.se

Contraction Mapping

F: X — X (X closed) is a contraction mapping if ||[F(z) — F(y)| < a|lxz — ||,
Va,y € X for some norm || - || and a € [0, 1).

A contraction mapping F' has a unique fixed point * € X (i.e., F(z*) = x*).

For any initial 2(0) € X, the sequence {x(t)} generated by the iterative method
z(t+ 1) = F(x(t)) converges to x* geometrically:

|(t) — 2" < a'||(0) — 2", V¥t =0.

if the following hold:
(i) f is twice continuously differentiable
(ii) dvéi(m) < L for some L > 0, Vz, Vi
dV; f(x dV; f(x)
(ii) >, | dgj()|—|—6<\ f(|, Va, Vi for some 8 > 0
(V2 f satisfies a diagonal dommance condition),
then the gradient mapping F(z) = z — aV f(z) with 0 < a < + is a maximum-
norm contracion mapping.

Parallel Computations

Executing iterative algorithms z(t + 1) = F(x(¢)) in parallel:
= trivial when F(.) has structure, e.g. F(xz) =) F® (zP))

= or when there is a central coordinator that mai%tains global state F(z) = Z F®) ()
p
More challenging when state (decision variables) updates are distributed

Component-wise parallelization: Each processor responsible for one decision

variable, executes z;(t + 1) = F;(z;(t), z_;(t))
Z;(t)

Selected issues:

= How to gather states from other processors?
= What if this information is delayed, noisy, distorted?
= How to account for asynchronous execution?

Asynchronous Model

Let 7" be the set of event times, when some of the processors executes an update.

Let 7() c T be the event times when processor ; updates its state

E@ @), @), e @) ifteT®

x;(t) otherwise

m XX, X=X XXQX---XXn,F:(Fl,...,Fn)IX—)X

x§i) (r}“(t)) IS the most recent version of =, available to processor ; at time ¢, and
was computed at time 77 (t) e 70), 0 < 71 (t) <1t

Information from other processors possibly delayed

Accounts for asynchronicity and information delay.

Total Asynchronism

m Updates arbitrarily infrequent, information delays arbitrarily long

m Formally, the execution is totally asynchronous if
= The update sets 7(¥) are infinite, and

= For every sequence {t;} € 7 with limy_, o t, = 00, it
also holds that limy ., 7" () = oo

m No processor ceases to update and communicate its information.

Asynchronous Convergence Theorem

m Theorem: If there is a sequence of nonempty sets { X (¢)} with
D X(t=-1)DX(t) D
satisfying
(Synchronous convergence condition)

F(zx)e X(t+1) Vt, Vo € X(t)
and for every sequence {y(t)} with y(t) € X(¢) Vvt , every limit point of {y(¢)}
Is a fixed point of F

(Box condition)
for every t there exists sets X, (¢) € X; such that

X(t) = X1(t) x Xo(t) x -+ x X, ()

Then, if z(0) € X(0), then every limit point of {x(¢)} is a fixed point of F

Max-Norm Contractions Under Total Asynchronism
m Max-norm contraction: There exists « € [0, 1) such that
|F(z) = F(y)lloo < allz =yl Vr,yeX

= Have unique fixed points, linear convergence rates.

m Also converge under total asynchronism, since
X(t)={z eR" ||z — 2"]lec < a'[|z(0) — 2"||oc]
satisfy the conditions of the asynchronous convergence theorem.

m The gradient method converges totally asynchronously when it is a max-norm
contraction.

Partially Asynchronism

An algorithm is called partially asynchronous if

(i) For each i and ¢, {t,t +1,...,t + D — 1} NT® £)
(i) t — D < 7.)(t) <tV Vi, j

m During every window of length D, each processor updates at least once
m The information used by any node is outdated with at most D time units

If f is convex and has Lipschitz gradient (L > 0), then the gradient method
r(t+1)=2x(t) — aVf(x(t))
converges under partial asynchronism, provided that

1
“s L(1+(n+1)D)

Distributed Optimization over Graphs

m Convex optimization problem under (logical) communication constraints

mlz?elIIR}}LlZQ Z’LEV fO’L(x) fOl ($> f02 (x>
subjectto x € Ny X,
(V.E) = G
X1 X fos(@)

m Nodes can only exchange information with immediate neighbors in G.

Example: robust estimation

m Nodes measure different noisy versions y;(t) of the same quantity.

m Would like to agree on common estimate = that minimizes

minimize) .y ||yi(t) — ||z
subject to z € X
(V.E)=G

where || - ||z is the Huber loss

= Quadratic norm
----- Hubernorm || 607

* Data
- | ===Least squares
—— Huber

Va lue

O = N W A U0 NN
-

-4 -3 -2 -1 0 50 100 150 200 250

Samples

10

The Dual Approach

m Introduce local decision vector z(*) and re-write problem on the form

minimize Y, fo;(z(¥)
subject to () =20U) V(i j) e E

m Relax consistency constraints using Lagrange multipliers, solve dual problem.

fm(fC) foz(x) fm(fB(l)) f02($(2))
21— 4(2)

fo3(z)

m Can do with less than consistency on every edge.

11

A Primal Approach

m For simplicity, drop constraint and consider
minimize Y ., foi()
m Can we develop a solution approach that works directly with primal variables?

®m Yes, if we introduce local decision vectors and reconcile “sufficiently” well

12

A Two-Step Approach

m Step 1: Nodes take step in gradient direction
:%(Z) (t -+ 1) = 113(7') (t) — OéVfoZ' (ZL’(Z))

m Step 2: Reconcile by forming network-wide average
(’5) Z CIJ(‘?) t+ 1

m Recovers standard gradient method

D (t+1) = Zx(J) _avaO (2U)) = 2D (¢ __vao 2 (¢

N Network-averaglng possible with peer-to-peer exchanges only

13

Distributed Averaging and Consensus

m Averaging can be performed distributedly

(@)(t_|_ 1) = q; Z(@) _|_ Z a; Z(J)
JEN;

m For appropriately chosen weights,

lim Z(Z) T) Zz(z) = Zave(0)

T — 00

m Known as distribtued averaging or average consensus.

14

Consensus Algorithm

m For simplicity, consider scalar z(%). Re-write iterations on matrix form
z(t+1) = Az(t)

m Convergence to the average

1
lim z(T) = lim A'2(0) = =117 2(0) = 124ve(0)

T— 00 T— 00 n

occurs if and only if A satisfies

17 A 1"
A1 = 1
p(A—+111T) < 1

1

m Linear convergence rate governed by p2(A4). Mixing time Tix ~ —
In py~(A)

15

Convergence Rate of the Two-Step approach

m Each optimization step essentially takes 7, ;. iterations to execute

m So convergence time for strongly convex and L-Lipschitz gradient case is
O(Tmix ln(l/e))

m Do we really need to converge to average before taking next step?

16

The Interleaved Version
Can also consider an interleaved version (single consensus iteration)

x(%‘)((y) _ Oévforb.(x(i))

jGN

Can show that
2 () — Z(t)| = O(aTmix Z IV fi(z(1))])

Hence, for fixed step-size, error does not vanish at optimality.
Typically studied for non-smooth or stochastic case
Convergence rate estimates same flavor as two-phase version
Versions that perform a multiple consensus steps also exist

(B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson, Subgradient methods
and consensus algorithms for solving convex optimization problems, CDC 2008)

Alternative Methods

m Incremental subgradient method: Pass an estimate on the optimum over the
network with subgradient updates

= Cyclic

= Uniform
z(t+1)
z(t)

= Markov-chain-based (Selects random neighbor to update)
z(t + 2)

o(t) w(t+1 0

Dealing with a Global Constraint

m Resource allocation over a network

minimize). foi(x;)
subject to 11z =1

m Gradient projection method

z(t+1)=Px{z(t) —aVfe(z(t))} =

(1) — (1 _ l117’) oV F(z(1)

n

m Consensus-based projection
r(t4+1) =2(t) — (I — AN)aVf(z(t))

= Exactwhen K — oo

19

Dealing with a Global Constraint

m For asingle consensus iteration per step,
zt+1)=z(t)— (I —A)aVf(z(t))

m We recover the method by Ho et al. (Y. C. Ho, L. Servi, and R. Suri. A class of

center-free resource allocation algorithms. Large Scale Systems, 1:51--62,
1980.)

r(t+1)=xz(t) — WV f(z(t))

where W = a(I — A) satisfies 17W =0, W1 =0

m Hence, resource constraint is satisfied at all times

172t + 1) = 172(t) — 1TWV F(z(t)) = 172 (t)

20

Summary

m Asynchronous iterative methods
= Models for asynchronous and distributed computation
= Distribute iteration (e.g. gradient descent) on multiple processors
= Different update rates, different communication delays
= Total and partial asynchronism

= Convergence results for totally asynchronous iterations
= Gradient method under total and partial asynchronism

m Distributed optimization over graphs
= Optimization with logical constraints: “who can communicate with whom”

= Techniques for optimizing additive (“per agent™) loss function
= Dual decomposition
= Two-step gradient descent/consensus
= Interleaved gradient descent/consensus
= An algorithm for maintaining a global constraint.

21

References

m Asynchronous lterative methods

= Dimitri P. Bertsekas and John N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods, Prentice-Hall, 1989. (Chapters 3, 6, 7)

m Distributed optimization

= B. Yang and M. Johansson, Distributed optimization and games: a tutorial
overview, In A. Bemporad, M. Heemels and M. Johansson, Eds., Networked
Control Systems, 2010.

= A. Nedic and A. Ozdaglar, Cooperative Distributed Multi-Agent Optimization, In
Y. Eldar and D. Palomar, Eds., Convex Optimization in Signal Processing and
Communications, Cambridge University Press, pp. 340-386, 2010.

22

