Lecture 3 Optimal First-order Methods

Jie Lu (jielu@kth.se)

Richard Combes Alexandre Proutiere

Automatic Control, KTH

September 17, 2013

Lower Complexity Bound (Lipschitz Gradient)

- Consider a class $\mathcal{F}_L(\mathbb{R}^n)$ of convex functions that are
 - Continuously differentiable
 - Lipschitz continuous gradient with Lipschitz constant L > 0

Use iterative first-order method *M*

 $x_k \in x_0 + \operatorname{Lin}\{\nabla f(x_0), \dots, \nabla f(x_{k-1})\}, \forall k \ge 1$

Goal: find a function $f \in \mathcal{F}_L(\mathbb{R}^n)$ that is "bad" for all \mathcal{M} (lower bound on convergence rate)

Lower Complexity Bound (Lipschitz Gradient)

• Let L > 0. Consider the family of quadratic functions $f_k : \mathbb{R}^n \to \mathbb{R}$

$$f_k(x) = \frac{L}{4} \left\{ \frac{1}{2} [(x^{(1)})^2 + \sum_{i=1}^{k-1} (x^{(i)} - x^{(i+1)})^2 + (x^{(k)})^2] - x^{(1)} \right\}, \quad k = 1, \dots, n.$$

•
$$0 \leq \nabla^2 f_k(x) \leq LI \Rightarrow f_k \in \mathcal{F}_L$$

• $\nabla^2 f_k(x) = \frac{L}{4} A_k$, where $A_k = \begin{pmatrix} 2 & -1 & 0 & & \\ -1 & 2 & -1 & 0 & \\ 0 & -1 & 2 & & \\ & \ddots & & \ddots & \\ & 0 & & -1 & 2 & -1 \\ & 0 & & 0 & -1 & 2 \end{pmatrix}$ k lines
 $\begin{pmatrix} & 0 & -1 & 2 & -1 \\ 0 & & 0 & -1 & 2 \end{pmatrix}$ k lines

•
$$\nabla f_k(x) = \frac{L}{4}(A_k x - e_1)$$

• $\nabla f_k(x_k^{\star}) = 0 \Rightarrow x_k^{\star} = \begin{cases} 1 - \frac{i}{k+1}, & i = 1, \dots, k, \\ 0, & i = k+1, \dots, n \end{cases}$
 $f^{\star} = \frac{L}{8}(-1 + \frac{1}{k+1})$

Lower Complexity Bound (Lipschitz Gradient)

Theorem: For any $k, 1 \le k \le \frac{1}{2}(n-1)$ and any $x_0 \in \mathbb{R}^n$, there exists a function $f \in \mathcal{F}_L(\mathbb{R}^n)$ such that for any \mathcal{M} , $f(x_k) - f^* \ge \frac{3L \|x_0 - x^*\|^2}{32(k+1)^2},$ $\|x_k - x^*\|^2 \ge \frac{1}{32} \|x_0 - x^*\|^2$

Proof (Sketch). Without loss of generality, assume $x_0 = 0$. Fix $k, 1 \leq k \leq \frac{1}{2}(n-1)$ and apply \mathcal{M} to $f = f_{2k+1}$, generating $\{x_k\}_{k=1}^{\infty}$. Thus, $x^* = x_{2k+1}^*$ and $f^* = f_{2k+1}^*$.

• Denote $R^{\ell,n} = \{x \in \mathbb{R}^n : x^{(i)} = 0, \ \ell + 1 \leq i \leq n\}$. Let $p \in \{1, 2, \dots, n\}$. Prove (by induction) that for any $\{y_\ell\}_{\ell=0}^p$ where $y_0 = 0$ and each $y_\ell \in \mathcal{L}_\ell \triangleq$ $\operatorname{Lin}\{\nabla f_p(y_0), \dots, \nabla f_p(y_{\ell-1})\}$, we have $\mathcal{L}_\ell \subset R^{\ell,n} \ \forall \ell \in \{0, 1, \dots, p\}$.

$$\Rightarrow f_p(y_\ell) = f_\ell(y_\ell) \ge f_\ell^\star.$$

• Prove that
$$||x_{\ell}^{\star}||^2 \leq \frac{\ell+1}{3} \quad \forall \ell \in \{1, 2, \dots, n\}.$$

With the above,

$$\frac{f(x_k) - f^*}{\|x_0 - x^*\|^2} \ge \frac{f_k^* - f_{2k+1}^*}{\|x_{2k+1}^*\|^2} \ge \frac{f_k^* - f_{2k+1}^*}{(2k+2)/3} \Rightarrow \text{ 1st inequality.}$$
$$\|x_k - x^*\|^2 \ge \sum_{i=k+1}^{2k+1} (x_k^{(i)} - x_{2k+1}^{*(i)})^2 = \sum_{i=k+1}^{2k+1} (x_{2k+1}^{*(i)})^2 \Rightarrow \text{ 2nd inequality.}$$

4

Lower Complexity Bound (Strongly Convex + Lipschitz Gradient)

Consider a class $S_{\mu,L}(\mathbb{R}^n)$ of functions that belong to $\mathcal{F}_L(\mathbb{R}^n)$ and are strongly convex with convexity parameter $\mu > 0$

• Let
$$Q_f = L/\mu$$
. Consider $f_{\mu,Q_f} : \mathbb{R}^\infty \to \mathbb{R}$
 $f_{\mu,Q_f}(x) = \frac{\mu(Q_f - 1)}{4} \left\{ \frac{1}{2} [(x^{(1)})^2 + \sum_{i=1}^\infty (x^{(i)} - x^{(i+1)})^2] - x^{(1)} \right\} + \frac{1}{2}\mu \parallel x \parallel^2.$
• $\nabla^2 f_{\mu,Q_f} = \frac{\mu(Q_f - 1)}{4} A + \mu I$, where $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 \\ 0 & & \dots \end{pmatrix}.$

• $\mu I \leq \nabla^2 f_{\mu,Q_f}(x) \leq LI \Rightarrow f_{\mu,Q_f} \in \mathcal{S}_{\mu,L}$, with condition number Q_f

•
$$\nabla f_{\mu,Q_f}(x) = \left(\frac{\mu(Q_f-1)}{4}A + \mu I\right)x - \frac{\mu(Q_f-1)}{4}e_1$$

• Let $q = \frac{\sqrt{Q_f} - 1}{\sqrt{Q_f} + 1}$ and $x^* \in \mathbb{R}^\infty$ be such that $x^{*(i)} = q^i$. Then, $\nabla f_{\mu,Q_f}(x^*) = 0$.

Lower Complexity Bound (Strongly Convex + Lipschitz Gradient)

Theorem: For any $x_0 \in \mathbb{R}^{\infty}$, there exists $f \in \mathcal{S}_{\mu,L}(\mathbb{R}^{\infty})$ s.t. for any \mathcal{M} ,

$$\|x_k - x^{\star}\|^2 \ge \left(\frac{\sqrt{Q_f} - 1}{\sqrt{Q_f} + 1}\right)^{2k} \|x_0 - x^{\star}\|^2,$$
$$f(x_k) - f^{\star} \ge \frac{\mu}{2} \left(\frac{\sqrt{Q_f} - 1}{\sqrt{Q_f} + 1}\right)^{2k} \|x_0 - x^{\star}\|^2.$$

Proof (Sketch). WLOG, assume $x_0 = 0$. Let $f = f_{\mu,Q_f}$. Next, prove by induction that $x_k \in \mathbb{R}^{k,\infty}$. Consequently,

$$\|x_k - x^\star\|^2 \ge \sum_{i=k+1}^{\infty} (x_k^{(i)} - x^{\star(i)})^2 = \sum_{i=k+1}^{\infty} (x^{\star(i)})^2 = \sum_{i=k+1}^{\infty} q^{2i} = \frac{q^{2(k+1)}}{1 - q^2}$$

Also,

$$||x_0 - x^{\star}||^2 = \sum_{i=1}^{\infty} \left(x^{\star(i)}\right)^2 = \sum_{i=1}^{\infty} q^{2i} = \frac{q^2}{1 - q^2}$$

Therefore, $||x_k - x^*||^2 \ge q^{2k} ||x_0 - x^*||^2$, i.e., the 1st inequality holds. The 2nd inequality comes from the strong convexity of f.

Estimate Sequence

- A pair of sequences $\{\phi_k(x)\}_{k=0}^{\infty}$ and $\{\lambda_k\}_{k=0}^{\infty}$, $\lambda_k > 0$ is an *estimate sequence* of f(x) if
 - $\lambda_k \to 0.$
 - $\forall x \in \mathbb{R}^n, \, \forall k \ge 0, \, \phi_k(x) \le (1 \lambda_k)f(x) + \lambda_k \phi_0(x).$
- For any $\{x_k\}_{k=0}^{\infty}$, if $f(x_k) \le \phi_k^{\star} \triangleq \min_{x \in \mathbb{R}^n} \phi_k(x) \ \forall k \ge 0$, then $f(x_k) - f^{\star} \le \lambda_k(\phi_0(x^{\star}) - f^{\star}) \to 0$.
 - Convergence rate of $\{\lambda_k\}_{k=0}^{\infty} \Rightarrow$ convergence rate of $\{x_k\}_{k=0}^{\infty}$
- Consider $f \in \mathcal{S}_{\mu,L}(\mathbb{R}^n)$
 - Allow $\mu = 0$ $(\mathcal{S}_{0,L}(\mathbb{R}^n) = \mathcal{F}_L(\mathbb{R}^n))$
- **Task #1:** Construct an estimate sequence $(\{\phi_k(x)\}_{k=0}^{\infty}, \{\lambda_k\}_{k=0}^{\infty})$ **Task #2:** Form $\{x_k\}_{k=0}^{\infty}$ that satisfies $f(x_k) \le \phi_k^{\star}$

Task #1

Let ϕ_0 be an arbitrary function and $\{y_k\}_{k=0}^{\infty}$ be an arbitrary sequence. Also let $\{\alpha_k\}_{k=0}^{\infty}$ be s.t. $\alpha_k \in (0,1), \sum_{k=0}^{\infty} \alpha_k = \infty$. Then, $\{\phi_k(x)\}_{k=0}^{\infty}$ and $\{\lambda_k\}_{k=0}^{\infty}$ defined as follows is an estimate sequence:

$$\lambda_0 = 1, \lambda_{k+1} = (1 - \alpha_k)\lambda_k, \phi_{k+1}(x) = (1 - \alpha_k)\phi_k(x) + \alpha_k \Big(f(y_k) + \nabla f(y_k)^T (x - y_k) + \frac{\mu}{2} ||x - y_k||^2\Big).$$

Let
$$\phi_0(x) = \phi_0^{\star} + \frac{\gamma_0}{2} ||x - v_0||^2$$
, $\gamma_0 > 0$. Then, $\phi_k(x) = \phi_k^{\star} + \frac{\gamma_k}{2} ||x - v_k||^2$, where
 $\gamma_{k+1} = (1 - \alpha_k)\gamma_k + \alpha_k\mu$,
 $v_{k+1} = \frac{1}{\gamma_{k+1}} \Big((1 - \alpha_k)\gamma_k v_k + \alpha_k\mu y_k - \alpha_k\nabla f(y_k) \Big)$,
 $\phi_{k+1}^{\star} = (1 - \alpha_k)\phi_k^{\star} + \alpha_k f(y_k) - \frac{\alpha_k^2}{2\gamma_{k+1}} ||\nabla f(y_k)||^2$
 $+ \frac{\alpha_k(1 - \alpha_k)\gamma_k}{\gamma_{k+1}} \Big(\frac{\mu}{2} ||y_k - v_k||^2 + \nabla f(y_k)^T (v_k - y_k) \Big)$.

Task #2

Given $x_0 \in \mathbb{R}^n$, let $v_0 = x_0$ and $\phi_0^* = f(x_0)$. Then, $f(x_0) = \phi_0^*$.

Let $k \ge 0$. Suppose we already have x_k s.t. $f(x_k) \le \phi_k^{\star}$. Because of this and because $f(x_k) \ge f(y_k) + \nabla f(y_k)^T (x_k - y_k)$,

$$\phi_{k+1}^{\star} \ge \underbrace{f(y_k) - \frac{\alpha_k}{2\gamma_{k+1}} \|\nabla f(y_k)\|^2}_{\le f(x_{k+1})?} + \underbrace{(1 - \alpha_k) \nabla f(y_k)^T \left(\frac{\alpha_k \gamma_k}{\gamma_{k+1}} (v_k - y_k) + x_k - y_k\right)}_{=0?}$$

• Recall that $f(y_k) - \frac{1}{2L} \|\nabla f(y_k)\|^2 \ge f(y_k - \frac{1}{L} \nabla f(y_k))$. (Gradient descent) $\Rightarrow \begin{cases} \frac{\alpha_k^2}{2\gamma_{k+1}} = \frac{1}{2L} \Rightarrow L\alpha_k^2 = (1 - \alpha_k)\gamma_k + \alpha_k\mu, \\ x_{k+1} = y_k - \frac{1}{L} \nabla f(y_k). \end{cases}$

•
$$\frac{\alpha_k \gamma_k}{\gamma_{k+1}} (v_k - y_k) + x_k - y_k = 0$$
$$\Rightarrow y_k = \frac{\alpha_k \gamma_k v_k + \gamma_{k+1} x_k}{\gamma_k + \alpha_k \mu}$$

Constant Step Scheme

Initialization: Choose
$$x_0 \in \mathbb{R}^n$$
 and $\gamma_0 > 0$. Set $v_0 = x_0$.
At each iteration $k \ge 0$:
1) Compute $\alpha_k \in (0,1)$ from $L\alpha_k^2 = (1 - \alpha_k)\gamma_k + \alpha_k\mu$.
2) Set $\gamma_{k+1} = (1 - \alpha_k)\gamma_k + \alpha_k\mu$.
3) Set $y_k = \frac{\alpha_k \gamma_k v_k + \gamma_{k+1} x_k}{\gamma_k + \alpha_k \mu}$.
4) Set $x_{k+1} = y_k - \frac{1}{L}\nabla f(y_k)$.
5) Set $v_{k+1} = \frac{1}{\gamma_{k+1}} \Big((1 - \alpha_k)\gamma_k v_k + \alpha_k \mu y_k - \alpha_k \nabla f(y_k) \Big)$.

General scheme: Step 4) Find x_{k+1} such that $f(x_{k+1}) \leq f(y_k) - \frac{1}{2L} \|\nabla f(y_k)\|^2$.

Convergence Rate

Theorem: Consider the use of the general scheme (thus the constant step scheme) and let $\gamma_0 > 0$ be such that $\gamma_0 \ge \mu$. Then,

$$f(x_k) - f^* \le \left(\frac{L + \gamma_0}{2}\right) \min\left\{ \left(1 - \sqrt{\frac{\mu}{L}}\right)^k, \frac{4L}{(2\sqrt{L} + k\sqrt{\gamma_0})^2} \right\} \|x_0 - x^*\|^2, \quad \forall k \ge 0.$$

Proof (sketch). Recall that $\phi_0(x) = f(x_0) + \frac{\gamma_0}{2} ||x - x_0||^2$ and that $f(x_k) - f^* \leq \lambda_k (\phi_0(x^*) - f^*)$. Since $f(x_0) - f^* \leq \frac{L}{2} ||x_0 - x^*||^2$, we have $f(x_k) - f^* \leq \lambda_k \cdot \frac{L+\gamma_0}{2} ||x_0 - x^*||^2$. Next, derive the convergence rate of λ_k :

• Prove by induction that
$$\gamma_k \ge \mu$$
, $\forall k \ge 0$.
 $\Rightarrow \alpha_k \ge \sqrt{\frac{\mu}{L}} \Rightarrow \lambda_k \le \left(1 - \sqrt{\frac{\mu}{L}}\right)^k$

• Prove by induction that $\gamma_k \geq \gamma_0 \lambda_k, \forall k \geq 0$. Using this and $\lambda_{k+1} \leq \lambda_k$, we get $\frac{1}{\sqrt{\lambda_{k+1}}} - \frac{1}{\sqrt{\lambda_k}} \leq \frac{1}{2}\sqrt{\frac{\gamma_0}{L}}$. $\Rightarrow \lambda_k \leq \frac{4L}{2\sqrt{L} + k\sqrt{\gamma_0}}$. Therefore, $\lambda_k \leq \min\left\{\left(1 - \frac{\mu}{L}\right)^k, \frac{4L}{(2\sqrt{L} + k\sqrt{\gamma_0})^2}\right\}, \forall k \geq 0$.

Why Optimal?

Let \(\gamma_0 = L\). Then, the scheme is optimal for \(\mathcal{S}_{\mu,L}(\mathbb{R}^n)\).
 \(\mu > 0\).

From the lower convexity bound for $\mathcal{S}_{\mu,L}(\mathbb{R}^n)$,

$$f(x_k) - f^* \ge \frac{\mu}{2} \left(\frac{\sqrt{Q_f} - 1}{\sqrt{Q_f} + 1}\right)^{2k} \|x_0 - x^*\|^2 \ge \frac{\mu}{2} \exp\left(-\frac{4k}{\sqrt{Q_f} - 1}\right) \|x_0 - x^*\|^2$$
$$\left(\ln(1 - q) \ge -\frac{q}{1 - q}, \ 0 \le q < 1\right)$$

To make
$$f(x_k) - f^* < \epsilon, \ k \ge \frac{\sqrt{Q_f} - 1}{4} \left(\ln \frac{1}{\epsilon} + \ln \frac{\mu}{2} + 2 \ln \|x_0 - x^*\| \right).$$

From the convergence rate of the scheme,

$$f(x_k) - f^* \le L \left(1 - \frac{1}{\sqrt{Q_f}} \right)^k \|x_0 - x^*\|^2 \le L \exp\left(-\frac{k}{\sqrt{Q_f}}\right) \|x_0 - x^*\|^2.$$

For $k \leq \sqrt{Q_f} \left(\ln \frac{1}{\epsilon} + \ln L + 2 \ln \|x_0 - x^\star\| \right)$, we have $f(x_k) - f^\star < \epsilon$. $\mu = 0.$ (Exercise)

Simplification

Remove
$$(v_k)_{k=0}^{\infty}$$
:

$$\begin{cases} y_{k} = \frac{\alpha_{k}\gamma_{k}v_{k} + \gamma_{k+1}x_{k}}{\gamma_{k} + \alpha_{k}\mu} \\ x_{k+1} = y_{k} - \frac{1}{L}\nabla f(y_{k}) \\ v_{k+1} = \frac{1}{\gamma_{k+1}} \left((1 - \alpha_{k})\gamma_{k}v_{k} + \alpha_{k}\mu y_{k} - \alpha_{k}\nabla f(y_{k}) \right) \\ \Rightarrow \begin{cases} v_{k+1} = x_{k} + \frac{1}{\alpha_{k}}(x_{k+1} - x_{k}) \\ y_{k+1} = x_{k+1} + \beta_{k}(x_{k+1} - x_{k}), & \beta_{k} = \frac{\alpha_{k+1}\gamma_{k+1}(1 - \alpha_{k})}{\alpha_{k}(\gamma_{k+1} + \alpha_{k+1}\mu)} \\ \end{cases} \\ \begin{cases} \alpha_{0}^{2}L = \gamma_{1} = (1 - \alpha_{0})\gamma_{0} + \mu\alpha_{0} \\ \Rightarrow y_{0} = x_{0} \end{cases}$$

$$\begin{cases} v_0 = x_0 \end{cases} \Rightarrow y_0 = x_0$$

Remove $(\gamma_k)_{v=0}^{\infty}$: $\begin{cases} \alpha_k^2 L = \gamma_{k+1} \\ \alpha_{k+1}^2 L = (1 - \alpha_{k+1})\gamma_{k+1} + \alpha_{k+1}\mu \end{cases} \Rightarrow \begin{cases} \beta_k = \frac{\alpha_k(1 - \alpha_k)}{\alpha_k^2 + \alpha_{k+1}} \\ \alpha_{k+1}^2 = (1 - \alpha_{k+1})\alpha_k^2 + \alpha_{k+1}\mu/L \end{cases}$

Simplified Constant Step Scheme

Initialization: Choose
$$x_0 \in \mathbb{R}^n$$
 and $\alpha_0 \in (0, 1)$. Set $y_0 = x_0$.
At each iteration $k \ge 0$:
1) Set $x_{k+1} = y_k - \frac{1}{L} \nabla f(y_k)$.
2) Compute $\alpha_{k+1} \in (0, 1)$ from $\alpha_{k+1}^2 = (1 - \alpha_{k+1})\alpha_k^2 + \alpha_{k+1}\mu/L$.
3) Set $\beta_k = \frac{\alpha_k(1 - \alpha_k)}{\alpha_k^2 + \alpha_{k+1}}$.
4) Set $y_{k+1} = x_{k+1} + \beta_k(x_{k+1} - x_k)$.

• Let $\alpha_0 \ge \sqrt{\frac{\mu}{L}} \ (\Leftrightarrow \gamma_0 \ge \mu)$. Then, the same convergence rate is derived. • For $\mu > 0$, if we set $\alpha_0 = \sqrt{\frac{\mu}{L}}$, then $\alpha_k = \sqrt{\frac{\mu}{L}}$, $\beta_k = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$, $\forall k \ge 0$. *Initialization:* Choose $x_0 \in \mathbb{R}^n$ and set $y_0 = x_0$. *At each iteration* $k \ge 0$: 1) Set $x_{k+1} = y_k - \frac{1}{L} \nabla f(y_k)$. 2) Set $y_{k+1} = x_{k+1} + \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}} (x_{k+1} - x_k)$.

Heavy Ball Method

Problem with gradient descent method: cannot avoid zig-zags

Heavy ball method

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1})$$

add robustness by accounting for successive moves

Physical meaning: heavy ball in a potential field under the force of friction

$$m\frac{d^2x(t)}{dt^2} = -\nabla f(x(t)) - p\frac{dx(t)}{dt}$$

Match Nesterov's lower complexity bound for $S_{\mu,L}(\mathbb{R}^n)$, $\mu > 0$ with optimal parameters

Convergence of Heavy Ball

Theorem: Let
$$f \in S_{\mu,L}(\mathbb{R}^n) \cap \mathcal{C}^2(\mathbb{R}^n)$$
. If $0 \le \beta < 1$ and $0 < \alpha < 2(1+\beta)/L$,
 $\|x_k - x^\star\| \le q^k \|x_0 - x^\star\|, \quad \forall k \ge 0,$

where $q \in (0, 1)$ reaches minimum $\frac{\sqrt{L/\mu} - 1}{\sqrt{L/\mu} + 1}$ for $\alpha = \frac{4}{\sqrt{L} + \sqrt{\mu}}$ and $\beta = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2$.

Proof (Sketch).

$$\begin{bmatrix} x_{k+1} - x^{\star} \\ x_k - x^{\star} \end{bmatrix} = \underbrace{\begin{bmatrix} (1+\beta)I_n - \alpha\nabla^2 f(x^{\star}) & -\beta I_n \\ I_n & 0 \end{bmatrix}}_{A} \begin{bmatrix} x_k - x^{\star} \\ x_{k-1} - x^{\star} \end{bmatrix} + o\left(\begin{bmatrix} x_k - x^{\star} \\ x_{k-1} - x^{\star} \end{bmatrix} \right)$$

The eigenvalues of A are the eigenvalues of $\begin{bmatrix} 1+\beta - \alpha\lambda_i(\nabla^2 f(x^{\star})) & -\beta \\ 1 & 0 \end{bmatrix}$, $i = 1, \dots, n$
i.e., the roots of $\rho^2 - (1+\beta - \alpha\lambda_i(\nabla f(x^{\star})))\rho + \beta = 0$.

Since $0 \le \beta < 1$ and $0 < \alpha < 2(1+\beta)/L$, each root ρ_i satisfies $|\rho_i| < 1$. $\Rightarrow q =$ spectral radius of $A \in (0, 1)$.

By solving $\min_{\alpha,\beta} \max_{i=1,\dots,2n} |\rho_i|$, we find the optimal α and β .

Performance of First-order Methods

Problem class	First-order method	Complexity	e=1%
Lipschitz-continuous function	Gradient	$\mathcal{O}(1/\varepsilon^2)$	10,000
Lipschitz-continuous gradient	Gradient	$\mathcal{O}(1/arepsilon)$	100
	Optimal gradient	$\mathcal{O}(1/\sqrt{\varepsilon})$	10
Strongly convex, Lipschitz gradient	Gradient	$\ln(1/\varepsilon)$	2.3
	Optimal gradient	$\ln(1/\varepsilon)$	

Summary

- Lower complexity bounds
 - Lipschitz gradient
 - Lipschitz gradient+strongly convex
- Nesterov's optimal methods
 - Achieve both lower complexity bounds
- Heavy ball method
 - Achieve lower complexity bound for strongly convex function with Lipschitz gradient with optimal parameter s
- References
 - Y. Nesterov, *Introductory lectures on Convex Optimization: A Basic Course*. Norwell, MA: Kluwer Academic Publishers, 2004.
 - B. Polyak, *Introduction to Optimization*. New York, NY: Optimization Software -Inc, Publications Division, 1987. (available online)